QoE-based Resource Allocation for Multi-cell Hybrid NOMA Networks
-
摘要: 该文研究了多小区混合非正交多址接入(MC-hybrid NOMA)网络的资源分配。为满足异构用户的服务体验,以最大化全网综合平均意见评分(MOS)累加和为目标,考虑基站选择、信道接入和功率资源分配的联合优化问题,该文提出一种用户、基站和信道3方的2阶段转移匹配算法,并根据用户MOS进行子信道功率优化。仿真结果表明所提多小区混合NOMA网络资源分配方案能有效提升全网用户服务体验和公平性。Abstract: Resource allocation in Multi-Cell hybrid Non-Orthogonal Multiple Access-orthogonal multiple access (MC-hybrid NOMA) networks is studied in this paper. To satisfy the Quality of Experience (QoE) of different service types of users, an algorithm joint user-BS association, sub-channel assignment and power allocation is proposed to maximize the sum Mean Opinion Scores (MOSs) of users in the networks. A low-complexity two-step approach based on matching game theory and developed power allocation strategy based on QoE proportional fairness are proposed. Simulation results demonstrate that the proposed algorithm can effectively improve the system performance and fairness.
-
Key words:
- Hybrid NOMA /
- Quality of Experience (QoE) /
- Resource allocation /
- Matching game
-
表 1 3小区混合NOMA网络实例(与图1情况对应)
基站1 基站2 基站3 用户1 用户2 用户3 用户4 用户5 用户6 用户7 用户8 子信道1 1 0 1 0 0 1 0 0 子信道2 0 0 1 1 1 0 0 1 子信道3 0 1 0 0 1 0 1 0 表 2 (用户,基站)-子信道关联算法
算法1: 多对1转移匹配算法 步骤1 用户的初始接入: (1) 每个用户发现所有在服务范围的可接入基站。随机接入最强信号的基站,并报告位置和业务类型; (2) 每个基站根据实际接入情况计算网络效用${U_n}(\mu )$。相邻的基站组成联盟,彼此交换信息。 步骤2 转移匹配过程: 重复迭代 (可采用轮询模式,当来自不同联盟的交换匹配轮询发生碰撞时,先到先得) 基站申请:选择基站SBS n,存在2种转移方式。当存在${U_n}\left({T}_{n'/(k{'_{n'} })}^{({k_n})}\right) > {U_n}(\mu ){\kern 1pt}$,选择相应方式发出申请。 联盟基站判断:SBS $n'$面对SBS n调换申请,对应存在2种调整方式。 If SBS n申请UE k接入新基站SBS $n'$ 如果${U_{n'} }({T}_{n'}^k) - {U_{n'} }(\mu ) > 0$,则SBS $n'$同意UE k的接入申请,及$\{ \mu (n')\} \leftarrow \{ \mu (n')\} \cup k$,${\eta _{n,k}} = 1$,${U_{n'} }({T}_{n'}^k) \to {U_{n'} }(\mu )$;否则 SBS $n'$拒绝SBS n发送转移申请; Else if SBS n中的用户k与SBS $n'$中的用户$k'$相互调换所接入基站 如果${U_{n'} }\left({T}_{n'}^{({k_n})}\right) - {U_{n'} }(\mu ) > 0$,则SBS $n'$同意SBS n发送转移申请,及$\{ \mu (n')\} \leftarrow \{ \mu (n')/k'\} \cup k$, $\{ \mu (n)\} \leftarrow \{ \mu (n)/k\} \cup k'$, ${\eta _{n,k'}} = 1,{\eta _{n,k}} = 0$, ${\eta _{n',k} } = 1,{\eta _{n',k'} } = 0$, ${U_{n'} }({T}_{n'}^k) \to {U_{n'} }(\mu )$;否则SBS $n'$拒绝SBS n发送的转移申请; End (以上为1次循环的过程) Until不存在$i \in \{ k,k' \in {{ {K} } }\} {\kern 1pt} {\kern 1pt} , {\kern 1pt} {U_n}({T}) > {U_n}(\mu )$或达到最大迭代数,则迭代循环结束。 表 3 用户-基站关联算法
算法2: 多对多转移匹配算法 步骤1 用户的初始信道选择: 根据用户业务,每个基站内用户分别初始化随机选择接入信道,一般低速视频业务偏向申请单信道,高清视频业务偏向申请多信道。每个基站内用户可选子信道数为m,则可能接入的排列组合有$C_m^1 + C_m^2 + \cdots + C_m^m$种,根据信道接入QoE得分建立2维偏好列表和相应的信道接入列表μk(m)。基站n计算所有接入用户的MOS得分累加和${U_n}(\mu ) = {\rm{MO}}{{\rm{S}}_n}({\mu _m}(k))$。 步骤2 转移匹配过程(各基站分别执行该算法): 重复迭代:基站n内各用户更新信道安排情况、相应QoE得分、信道接入的偏好列表; 用户申请:各基站随机挑选1位用户k。该用户嵌套计算各种信道选择下的MOS得分,并建立偏好列表,向MOS得分最高且信道占用最少的子信道策略发出申请,建立新申请信道相应的分配列表${T}_m^k$。 基站判断:面对UE k调整接入信道的申请,基站判决是否接受申请。 If ${\rm{MO} }{ {\rm{S} }_n}({T}_m^k) > {U_n}(\mu )$,则SBS $n$同意UE k新的信道接入申请,更新MOS得分累加和${\rm{MO} }{ {\rm{S} }_n}({T}_m^k)$→${U_n}(\mu )$,更新信道接入列表$T^k_m $。 else SBS $n$不同意UE k新的信道接入申请,不更新MOSn(μm(k)), (μm(k)。 End (完成1次信道匹配迭代) Until不存在$i \in \{ k,k' \in { { {K} } }\} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {U_n}({T}) > {U_n}(\mu )$或达到最大迭代数,则循环结束。 表 4 业务类型和QoS速率要求
应用类型 最小速率 推荐速率 视频会议 512 kbps 2 Mbps 高清视频通话 1.2 Mbps 1.5 Mbps 一般视频通话 128 kbps 500 kbps -
DING Zhiguo, LIU Yuanwei, CHOI J, et al. Application of non-orthogonal multiple access in LTE and 5G networks[J]. IEEE Communications Magazine, 2017, 55(2): 185–191. doi: 10.1109/MCOM.2017.1500657CM SONG Lingyang, LI Yonghui, DING Zhiguo, et al. Resource management in non-orthogonal multiple access networks for 5G and beyond[J]. IEEE Network, 2017, 31(4): 8–14. doi: 10.1109/MNET.2017.1600287 WANG Xianling, ZHANG Haijun, TIAN Yue, et al. Locally cooperative interference mitigation for small cell networks with non-orthogonal multiple access: A potential game approach[C]. 2018 IEEE International Conference on Communications, Kansas City, USA, 2018: 1–6. doi: 10.1109/ICC.2018.8422825. SONG Zhengyu, NI Qiang, and SUN Xin. Distributed power allocation for nonorthogonal multiple access heterogeneous networks[J]. IEEE Communications Letters, 2018, 22(3): 622–625. doi: 10.1109/LCOMM.2017.2789282 唐伦, 肖娇, 赵国繁, 等. 基于能效的NOMA蜂窝车联网动态资源分配算法[J]. 电子与信息学报, 2020, 42(2): 526–533. doi: 10.11999/JEIT190006TANG Lun, XIAO Jiao, ZHAO Guofan, et al. Energy Efficiency Based Dynamic Resource Allocation Algorithm for Cellular Vehicular Based on Non-Orthogonal Multiple Access[J]. Journal of Electronics &Information Technology, 2020, 42(2): 526–533. doi: 10.11999/JEIT190006 ZHAI Daosen and DU Jianbo. Spectrum efficient resource management for multi-carrier-based NOMA networks: A graph-based method[J]. IEEE Wireless Communications Letters, 2018, 7(3): 388–391. doi: 10.1109/LWC.2017.2779485 SHI Jia, YU Wenjuan, NI Qiang, et al. Energy efficient resource allocation in hybrid non-orthogonal multiple access systems[J]. IEEE Transactions on Communications, 2019, 67(5): 3496–3511. doi: 10.1109/TCOMM.2019.2893304 ZENG Ming, YADAV A, DOBRE O A, et al. Vincent Poor. Energy-efficient joint user-RB association and power allocation for uplink hybrid NOMA-OMA[J]. IEEE Internet of Things Journal, 2019, 6(3): 5119–5131. doi: 10.1109/JIOT.2019.2896946 SHAO Hongxiang, ZHAO Hangsheng, SUN Youming, et al. QoE-aware downlink user-cell association in small cell networks: A transfer-matching game theoretic solution with peer effects[J]. IEEE Access, 2016, 4: 10029–10041. doi: 10.1109/access.2016.2628382 WANG Wei, LIU Yuanwei, LUO Zhiqing, et al. Toward cross-layer design for non-orthogonal multiple access: A quality-of-experience perspective[J]. IEEE Wireless Communications, 2018, 25(2): 118–124. doi: 10.1109/MWC.2018.1700081 HE Shuan and WANG Wei. Multimedia upstreaming Cournot game in non-orthogonal multiple access internet of things[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(1): 398–408. doi: 10.1109/TNSE.2019.2897483 CUI Jingjing, LIU Yuanwei, DING Zhiguo, et al. QoE-based resource allocation for multi-cell NOMA networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(9): 6160–6176. doi: 10.1109/TWC.2018.2855130 SAUL A and AUER G. Multiuser resource allocation maximizing the perceived quality[J]. EURASIP Journal on Wireless Communications and Networking, 2009, 2009: 6. doi: 10.1155/2009/341689 NG C and HIRSCHBERG D S. Three-dimensional stable matching problems[J]. SIAM Journal on Discrete Mathematics, 1991, 4(2): 245–252. doi: 10.1137/0404023 BODINE-BARON E, LEE C, CHONG A, et al. Peer effects and stability in matching markets[C]. The 4th International Symposium on Algorithmic Game Theory, Amalfi, Italy, 2011: 117–129. doi: 10.1007/978-3-642-24829-0_12. How much bandwidth does Skype need?[EB/OL]. https://support.skype.com, 2014. JAIN R, CHIU D, and HAWE W. A quantitative measure of fairness and discrimination for resource allocation in shared computer system[R]. DEC-TR-301, 1984.