高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

语义分割网络重建单视图遥感影像数字表面模型

卢俊言 贾宏光 高放 李文涛 陆晴

卢俊言, 贾宏光, 高放, 李文涛, 陆晴. 语义分割网络重建单视图遥感影像数字表面模型[J]. 电子与信息学报, 2021, 43(4): 974-981. doi: 10.11999/JEIT200031
引用本文: 卢俊言, 贾宏光, 高放, 李文涛, 陆晴. 语义分割网络重建单视图遥感影像数字表面模型[J]. 电子与信息学报, 2021, 43(4): 974-981. doi: 10.11999/JEIT200031
Junyan LU, Hongguang JIA, Fang GAO, Wentao LI, Qing LU. Reconstruction of Digital Surface Model of Single-view Remote Sensing Image by Semantic Segmentation Network[J]. Journal of Electronics & Information Technology, 2021, 43(4): 974-981. doi: 10.11999/JEIT200031
Citation: Junyan LU, Hongguang JIA, Fang GAO, Wentao LI, Qing LU. Reconstruction of Digital Surface Model of Single-view Remote Sensing Image by Semantic Segmentation Network[J]. Journal of Electronics & Information Technology, 2021, 43(4): 974-981. doi: 10.11999/JEIT200031

语义分割网络重建单视图遥感影像数字表面模型

doi: 10.11999/JEIT200031
基金项目: 吉林省重大科技攻关项目(20170201006GX),长春市科技局重大科技攻关项目(SA13RP2018040101),吉林省科技厅重点科技研发项目(20180201109GX)
详细信息
    作者简介:

    卢俊言:男,1990年生,博士生,研究方向为基于深度学习的遥感影像数据挖掘

    贾宏光:男,1971年生,研究员,博士生导师,研究方向为无人机总体技术,精确末制导技术,飞行器半物理仿真及小型快速机电伺服技术

    高放:男,1987年生,工学博士,研究方向为遥感数据处理与应用

    李文涛:男,1990年生,硕士,研究方向为遥感影像DSM, DOM, DEM生产

    陆晴:女,1995年生,硕士,研究方向为基于深度学习的计算机视觉及数据挖掘

    通讯作者:

    贾宏光 jiahg@ciomp.ac.cn

  • 中图分类号: TP394.1

Reconstruction of Digital Surface Model of Single-view Remote Sensing Image by Semantic Segmentation Network

Funds: The Key Technologies of Jilin Province (20170201006GX), The Major Science and Technology Research Project of Changchun Science and Technology Bureau (SA13RP2018040101); The Key Science and Technology Research Project of Jilin Province Science and Technology Department (20180201109GX)
  • 摘要: 该文提出了一种仅依靠激光探测与测量数据,实现单视图遥感影像数字表面模型(DSM)重建的新方法。该方法基于深度学习技术设计了一种编码-解码结构的语义分割网络,该网络采用多尺度残差融合的编码块与解码(MRFED)块从输入图像中提取语义信息,进而逐像素预测高度值;采用特征图跳跃级联的策略保留输入图像的细节特征和结构信息。该文采用了一个包含DSM数据的遥感影像公开数据集训练与测试模型,实验结果表明:DSM重建结果与真值的平均绝对误差(MAE)为2.1e-02,均方根误差(RMSE)为3.8e-02,结构相似性(SSIM)为92.89%,均优于经典的深度学习语义分割网络。实验证实该方法能够有效实现单视图遥感影像的DSM重建,具有较高的精度,以及较强的地物分布结构重建能力。
  • 图  1  深度估计与高度预测

    图  2  MRFED网络结构示意图

    图  3  编码块与解码块结构

    图  4  MRFE的DSM重建结果

    图  5  测试结果的数据指标

    表  1  MRFED各层的特征图尺寸和通道数信息

    网络层尺寸通道数
    输入512×5123
    特征图#1256×25664
    特征图#2128×128128
    特征图#364×64256
    特征图#432×32512
    特征图#516×161024
    特征图#632×32512×2
    特征图#764×64256×2
    特征图#8128×128128×2
    特征图#9256×25664×2
    输出512×5121
    下载: 导出CSV

    表  2  测试结果的数据指标

    算法模型主干网络平均绝对误差均方根误差结构相似性
    FCNVGG162.2e-014.1e-010.6611
    U-netResNet-506.9e-021.0e-010.8534
    MRFEResNet-503.3e-025.9e-020.8490
    MRFE+跳跃级联ResNet-502.1e-023.8e-020.9289
    下载: 导出CSV

    表  3  Vaihingen数据集上的DSM重建结果对比

    方法平均绝对误差均方根误差
    ST loss[11]6.3e-029.9e-02
    本文2.9e-025.1e-02
    下载: 导出CSV
  • AUDEBERT N, LE SAUX B, and LEFÈVREY S. Fusion of heterogeneous data in convolutional networks for urban semantic labeling[C]. 2017 Joint Urban Remote Sensing Event, Dubai, United Arab Emirates, 2017: 1–4. doi: 10.1109/jurse.2017.7924566.
    QIN Rongjun, HUANG Xin, GRUEN A, et al. Object-based 3-D building change detection on multitemporal stereo images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(5): 2125–2137. doi: 10.1109/jstars.2015.2424275
    QIN Rongjun, TIAN Jiaojiao, and REINARTZ P. 3D change detection–approaches and applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 122: 41–56. doi: 10.1016/j.isprsjprs.2016.09.013
    BUADES A, COLL B, and MOREL J M. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling & Simulation, 2005, 4(2): 490–530. doi: 10.1137/040616024
    LIU Guilin, REDA F A, SHIH K J, et al. Image inpainting for irregular holes using partial convolutions[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 89–105. doi: 10.1007/978-3-030-01252-6_6.
    DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295–307. doi: 10.1109/TPAMI.2015.2439281
    SHI Wenzhe, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1874–1883. doi: 10.1109/cvpr.2016.207.
    EIGEN D, PUHRSCH C, and FERGUS R. Depth map prediction from a single image using a multi-scale deep network[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2366–2374.
    EIGEN D and FERGUS R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 2650–2658. doi: 10.1109/iccv.2015.304.
    LIU Fayao, SHEN Chunhua, LIN Guosheng, et al. Learning depth from single monocular images using deep convolutional neural fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2024–2039. doi: 10.1109/tpami.2015.2505283
    SRIVASTAVA S, VOLPI M, and TUIA D. Joint height estimation and semantic labeling of monocular aerial images with CNNs[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017: 5173–5176. doi: 10.1109/igarss.2017.8128167.
    ZEILER M D and FERGUS R. Visualizing and understanding convolutional networks[C]. The 13th European Conference on computer Vision, Zurich, Switzerland, 2014: 818–833. doi: 10.1007/978-3-319-10590-1_53.
    MAHENDRAN A and VEDALDI A. Understanding deep image representations by inverting them[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5188–5196. doi: 10.1109/CVPR.2015.7299155.
    LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3431–3440. doi: 10.1109/cvpr.2015.7298965.
    杨宏宇, 王峰岩. 基于深度卷积神经网络的气象雷达噪声图像语义分割方法[J]. 电子与信息学报, 2019, 41(10): 2373–2381. doi: 10.11999/JEIT190098

    YANG Hongyun and WANG Fengyan. Meteorological radar noise image semantic segmentation method based on deep convolutional neural network[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2373–2381. doi: 10.11999/JEIT190098
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/cvpr.2016.90.
    罗会兰, 卢飞, 孔繁胜. 基于区域与深度残差网络的图像语义分割[J]. 电子与信息学报, 2019, 41(11): 2777–2786. doi: 10.11999/JEIT190056

    LUO Huilan, LU Fei, and KONG Fansheng. Image semantic segmentation based on region and deep residual network[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2777–2786. doi: 10.11999/JEIT190056
    ZEILER M D, TAYLOR G W, and FERGUS R. Adaptive deconvolutional networks for mid and high level feature learning[C]. 2011 International Conference on Computer Vision, Barcelona, Spain, 2011: 2018–2025. doi: 10.1109/iccv.2011.6126474.
    GLOROT X and BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]. The 13th International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 2010: 249–256.
    SUTSKEVER I, MARTENS J, DAHL G, et al. On the importance of initialization and momentum in deep learning[C]. The 30th International Conference on Machine Learning, Atlanta, USA, 2013: 1139–1147.
    RONNEBERGER O, FISCHER P, and BROX T. U-net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  1443
  • HTML全文浏览量:  718
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-09
  • 修回日期:  2020-09-10
  • 网络出版日期:  2020-09-14
  • 刊出日期:  2021-04-20

目录

    /

    返回文章
    返回