高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多维时空的NPCA-PSR-IGM(1,1)组合模型的短时交通流预测

殷礼胜 高贺 魏帅康 孙双晨 何怡刚

殷礼胜, 高贺, 魏帅康, 孙双晨, 何怡刚. 基于多维时空的NPCA-PSR-IGM(1,1)组合模型的短时交通流预测[J]. 电子与信息学报, 2021, 43(4): 1035-1041. doi: 10.11999/JEIT200026
引用本文: 殷礼胜, 高贺, 魏帅康, 孙双晨, 何怡刚. 基于多维时空的NPCA-PSR-IGM(1,1)组合模型的短时交通流预测[J]. 电子与信息学报, 2021, 43(4): 1035-1041. doi: 10.11999/JEIT200026
Lisheng YIN, He GAO, Shuaikang WEI, Shuangchen SUN, Yigang HE. Short-term Traffic Flow Prediction Based on NPCA-PSR-IGM (1,1) Combined Model of Multi-dimensional Space-time[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1035-1041. doi: 10.11999/JEIT200026
Citation: Lisheng YIN, He GAO, Shuaikang WEI, Shuangchen SUN, Yigang HE. Short-term Traffic Flow Prediction Based on NPCA-PSR-IGM (1,1) Combined Model of Multi-dimensional Space-time[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1035-1041. doi: 10.11999/JEIT200026

基于多维时空的NPCA-PSR-IGM(1,1)组合模型的短时交通流预测

doi: 10.11999/JEIT200026
基金项目: 国家自然科学基金(51577046, 61673153),教育部科学技术研究重大项目(313018),安徽省科技计划重点项目(1301022036)
详细信息
    作者简介:

    殷礼胜:男,1974年生,博士,副教授,研究方向为复杂系统建模、非线性时间序列预测、交通流预测等

    高贺:男,1993年生,硕士生,研究方向为交通流预测、智能控制系统

    魏帅康:男,1995年生,硕士生,研究方向为交通流预测、复杂系统建模

    孙双晨:男,1995年生,硕士生,研究方向为交通流预测、智能控制系统

    何怡刚:男,1966年生,博士,教授,研究方向为通信信道建模与检测、复杂电磁分析与建模等

    通讯作者:

    高贺 gaohe1104@163.com

  • 中图分类号: U491.1

Short-term Traffic Flow Prediction Based on NPCA-PSR-IGM (1,1) Combined Model of Multi-dimensional Space-time

Funds: The National Natural Science Foundation of China (51577046, 61673153), The Key Grant Project of Chinese Ministry of Education (313018), Anhui Provincial Science and Technology Foundation of China (1301022036)
  • 摘要: 针对城市短时交通流序列非线性和混沌性的特点,为提高短时交通流的预测精度,该文提出一种基于多维时空的非线性主成分分析(NPCA)和相空间重构(PSR)的改进灰色(IGM(1,1))组合预测模型。首先,使用数据相关性的非线性主成分分析算法对多维交通流量序列进行时空降维,同时保留影响预测点的主要交通流量数据,从而提高建模的精确度;其次,利用多维时空交通流量序列相空间重构放大交通流量内部的细微特征,以使其内在规律得以充分展现,进一步提升预测精度;最后,结合背景值改进的灰色模型适应于线性、非线性以及所需数据少的特点,进行短时交通流预测。实验结果表明,NPCA-PSR-IGM(1,1)组合预测模型的平均相对误差相比NPCA-PSR-GM(1,1)组合预测模型减小3.12%,其标准偏差相对PCA-PSR-IGM(1,1)组合预测模型从15.7091下降到2.0589。同时与最新的预测模型相比,该组合预测模型也提高了预测精度,达到了较好的预测效果。
  • 图  1  芜湖路与徽州大道交叉口示意图

    图  2  观测点1的交通流量序列$\ln r - \ln C$关系图

    图  3  多维时空NPCA-PSR-IGM(1,1)组合预测模型

    图  4  基于多维混沌时空NPCA-PSR-IGM(1,1)组合预测算法流程图

    图  5  3种组合预测模型预测结果图

    图  6  本文组合预测模型与最新模型预测结果

    表  1  各观测点与预测点交通流量数据相关系数

    观测点序号123456
    $\rho $1.0000.8000.9190.6010.4540.312
    下载: 导出CSV

    表  2  观测点1的嵌入维数与关联维数

    嵌入维数关联维数嵌入维数关联维数
    10.0640.36
    20.0950.47
    30.2860.49
    下载: 导出CSV

    表  3  3种组合预测模型预测误差统计

    组合预测模型平均相对误差(%)标准偏差
    NPCA-PSR-GM(1,1)3.336.4336
    PCA-PSR-IGM(1,1)7.6515.7091
    文献[7]模型4.349.5833
    文献[8]模型0.694.0010
    NPCA-PSR-IGM(1,1)0.122.0589
    下载: 导出CSV
  • DARAGHMI Y A, YI C W, and CHIANG T C. Negative binomial additive models for short-term traffic flow forecasting in urban areas[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2): 784–793. doi: 10.1109/TITS.2013.2287512
    DAI Guowen, MA Changxi, and XU Xuecai. Short-term traffic flow prediction method for urban road sections based on space–time analysis and GRU[J]. IEEE Access, 2019, 7: 143025–143035. doi: 10.1109/ACCESS.2019.2941280
    殷礼胜, 唐圣期, 李胜, 等. 基于整合移动平均自回归和遗传粒子群优化小波神经网络组合模型的交通流预测[J]. 电子与信息学报, 2019, 41(9): 2273–2279. doi: 10.11999/JEIT181073

    YIN Lisheng, TANG Shengqi, LI Sheng, et al. Traffic flow prediction based on hybrid model of auto-regressive integrated moving average and genetic particle swarm optimization wavelet neural network[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2273–2279. doi: 10.11999/JEIT181073
    MACKENZIE J, RODDICK J F, and ZITO R. An evaluation of HTM and LSTM for short-term arterial traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(5): 1847–1857. doi: 10.1109/TITS.2018.2843349
    梅朵, 郑黎黎, 冷强奎, 等. 基于时空GPSO-SVM的短时交通流预测[J]. 交通信息与安全, 2017, 35(2): 68–74, 120. doi: 10.3963/j.issn.1674-4861.2017.02.010

    MEI Duo, ZHENG Lili, LENG Qiangkui, et al. A prediction model for short-term traffic flow based on space-time GPSO-SVM[J]. Journal of Transport Information and Safety, 2017, 35(2): 68–74, 120. doi: 10.3963/j.issn.1674-4861.2017.02.010
    王科伟, 徐志红. 基于混沌时间序列的道路断面短时交通流预测模型[J]. 交通运输工程与信息学报, 2010, 8(1): 70–74. doi: 10.3969/j.issn.1672-4747.2010.01.014

    WAMG Kewei and XU Zhihong. Chaotic-time-series-based Short-term traffic flow forecast model of road cross-section[J]. Journal of Transportation Engineering and Information, 2010, 8(1): 70–74. doi: 10.3969/j.issn.1672-4747.2010.01.014
    钱伟, 车凯, 李冰锋. 基于组合模型的短时交通流量预测[J]. 控制工程, 2019, 26(1): 125–130.

    QIAN Wei, CHE Kai, and LI Bingfeng. Short-term traffic flow prediction based on combined models[J]. Control Engineering of China, 2019, 26(1): 125–130.
    佟健颉, 黎英, 王一旋. 基于深度残差网络的短时交通流量预测[J]. 电子测量技术, 2019, 42(18): 85–89. doi: 10.19651/j.cnki.emt.1902768

    TONG Jianjie, LI Ying, and WANG Yixuan. Deep residual network for short-term traffic flow prediction[J]. Electronic Measurement Technology, 2019, 42(18): 85–89. doi: 10.19651/j.cnki.emt.1902768
    王肖锋, 张明路, 刘军. 基于增量式双向主成分分析的机器人感知学习方法研究[J]. 电子与信息学报, 2018, 40(3): 618–625. doi: 10.11999/JEIT170561

    WANG Xiaofeng, ZHANG Minglu, and LIU Jun. Robot perceptual learning method based on incremental bidirectional principal component analysis[J]. Journal of Electronics &Information Technology, 2018, 40(3): 618–625. doi: 10.11999/JEIT170561
    眭萍, 郭英, 李红光, 等. 基于混沌吸引子重构和Low-rank聚类的跳频信号电台分选[J]. 电子与信息学报, 2019, 41(12): 2965–2971. doi: 10.11999/JEIT180947

    SUI Ping, GUO Ying, LI Hongguang, et al. Frequency-hopping transmitter classification based on chaotic attractor reconstruction and low-rank clustering[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2965–2971. doi: 10.11999/JEIT180947
    MA Ziji, DONG Yanru, LIU Hongli, et al. Forecast of non-equal interval track irregularity based on improved grey model and PSO-SVM[J]. IEEE Access, 2018, 6: 34812–34818. doi: 10.1109/ACCESS.2018.2841411
    YIN Kedong, GENG Yan, and LI Xuemei. Improved grey prediction model based on exponential grey action quantity[J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 560–570. doi: 10.21629/JSEE.2018.03.13
    ROOPA H and ASHA T. A linear model based on principal component analysis for disease prediction[J]. IEEE Access, 2019, 7: 105314–105318. doi: 10.1109/ACCESS.2019.2931956
    ZHANG Shuqing, HU Yongtao, JIANG Wanlu, et al. Chaos phase space reconstruction based on symbolic analysis and multi-component conditional entropy[C]. 2015 International Conference on Computational Intelligence and Communication Networks (CICN), Jabalpur, India, 2015: 612–616. doi: 10.1109/CICN.2015.125.
    FAN Yuhang, CHANG Dingge, WANG Yanbo, et al. Research on partial discharge identification of power transformer based on chaotic characteristics extracted by G-P algorithm[C]. The 2nd International Conference on Electrical Materials and Power Equipment (ICEMPE), Guangzhou, China, 2019: 577–581. doi: 10.1109/icempe.2019.8727289.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  1274
  • HTML全文浏览量:  413
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-05
  • 修回日期:  2020-08-22
  • 网络出版日期:  2020-09-17
  • 刊出日期:  2021-04-20

目录

    /

    返回文章
    返回