高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车联网中基于NOMA-MEC的卸载策略研究

张海波 刘香渝 荆昆仑 刘开健 贺晓帆

张海波, 刘香渝, 荆昆仑, 刘开健, 贺晓帆. 车联网中基于NOMA-MEC的卸载策略研究[J]. 电子与信息学报, 2021, 43(4): 1072-1079. doi: 10.11999/JEIT200017
引用本文: 张海波, 刘香渝, 荆昆仑, 刘开健, 贺晓帆. 车联网中基于NOMA-MEC的卸载策略研究[J]. 电子与信息学报, 2021, 43(4): 1072-1079. doi: 10.11999/JEIT200017
Haibo ZHANG, Xiangyu LIU, Kunlun JING, Kaijian LIU, Xiaofan HE. Research on NOMA-MEC-Based Offloading Strategy in Internet of Vehicles[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1072-1079. doi: 10.11999/JEIT200017
Citation: Haibo ZHANG, Xiangyu LIU, Kunlun JING, Kaijian LIU, Xiaofan HE. Research on NOMA-MEC-Based Offloading Strategy in Internet of Vehicles[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1072-1079. doi: 10.11999/JEIT200017

车联网中基于NOMA-MEC的卸载策略研究

doi: 10.11999/JEIT200017
基金项目: 国家自然科学基金(61801065, 61601071),长江学者和创新团队发展计划基金(IRT16R72),重庆市基础与前沿项目(cstc2018jcyjAX0463),重庆市留创计划创新类资助项目(cx2020059)
详细信息
    作者简介:

    张海波:男,1979年生,副教授,研究方向为无线资源管理

    刘香渝:女,1997年生,硕士生,研究方向为车联网资源管理

    荆昆仑:男,1995年生,硕士,研究方向为移动边缘计算

    刘开健:女,1981年生,讲师,研究方向为最优化算法

    贺晓帆:男,1985年生,教授,研究方向为无线资源优化

    通讯作者:

    刘香渝 lxyyuanna@qq.com

  • 中图分类号: TN915

Research on NOMA-MEC-Based Offloading Strategy in Internet of Vehicles

Funds: The National Natural Science Foundation of China (61801065, 61601071), The Program for Changjiang Scholars and Innovative Research Team in University (IRT16R72), The General Project on Foundation and Cutting-edge Research Plan of Chongqing (cstc2018jcyjAX0463), Chongqing Innovation and Entrepreneurship Project for Returned Chinese Scholars(cx2020059)
  • 摘要: 随着车联网(IoV)的迅猛发展,请求进行任务卸载的汽车终端用户也逐渐增长,而基于移动边缘计算(MEC)的通信网络能够有效地解决任务卸载在上行传输时延较高的挑战,但是该网络模型同时也面临着信道资源不足的问题。该文引入的非正交多址(NOMA)技术相较于正交多址(OMA)能够在相同的信道资源条件下为更多的用户提供任务卸载,同时考虑到任务卸载过程中多方面的影响因子,提出了混合NOMA-MEC卸载策略。该文设计了一种基于深度学习网络(DQN)的博弈算法,帮助车辆用户进行信道选择,并通过神经网络多次迭代学习,为用户提供最优的功率分配策略。仿真结果表明,该文所提出的混合NOMA-MEC卸载策略能够有效地优化多用户卸载的时延以及能耗,最大限度保证用户效益。
  • 图  1  系统模型图

    图  2  深度学习网络模型图

    图  3  任务大小与能耗关系图

    图  4  用户数目与总时延关系图

    图  5  带宽与用户容量关系图

    图  6  时延和能耗要求不同时用户数目与总开销关系图

    图  7  λ = 0.5时用户数目与总开销关系图

    表  1  基于DQN的合作博弈算法

     输入:车辆的请求卸载任务集${Q_v} = \{ {S_v},{D_v}\} $以及各用户功率,
        $i \in \{ 1,2, ···, {{k} }\}$
     输出:最优功率分配策略
     (1) 初始化:用户集合
     (2) for $i = 1;i < k;i + + $
     (3) 根据式(1)求出各用户时延$t = \{ {t_1},{t_2}, ···, {t_k}\}$
     (4) end for
     (5) for $i = 1;i < k;i + + $
     (6) $v = [\ ]$
     (7) if ${{t(i)} } \ge {{t(n)} }$:
     (8)  将该用户添加至新的用户集合$v$
     (9) end if
     (10) end for
     (11) 利用第1阶段在更新后的用户集合$v$求出与车辆用户$n$匹配的
       信道
     (12) 根据第2、第3两个阶段算出奖励函数,通过多次迭代求出
       最优功率分配策略
     (13) end
    下载: 导出CSV

    表  2  混合NOMA-MEC的卸载机制

       初始化车辆用户$v$的请求卸载任务${q_v} = \{ {s_v},{d_v}\} $,信道容量Q
     定义该用户的最佳能耗容忍区间$(0 - {{\rm{e}}^{\max }})$、时延能耗的权衡因
     子$\lambda$
     (1) 根据表1的功率分配策略分别求出基于OMA, NOMA,
       NOMA-MEC的能耗
     (2) 令$G$为优化目标函数
     (3) define OMA=O, NOMA=N, NOMA–MEC=NM
     (4) if ${\rm{sum}}\left( {{Q_v}} \right) > = {Q_{\max }}$:
     (5) if ${{\rm{e}}^v} < = {{\rm{e}}^{\max }}$:
     (6) if $t_N^v < = t_{{\rm{NM}}}^v$ or用户成本函数$G > = \lambda t_N^vp_N^v + (1 - \lambda )t_N^v$:
     (7) return N
     (8) else:
     (9) return NM
     (10) else:
     (11) return NM
     (12) else:
     (13) return O
    下载: 导出CSV

    表  3  部分系统仿真参数表

    部分系统仿真参数数值
    请求卸载任务数据${S_v}$200~2000 kB
    请求卸载任务时延容忍度${D_v}$0.01~3 s
    用户噪声功率${p_v}$–114 dBm
    任务卸载传输功率$p$20~25 dBm
    迭代次数${I_{{\rm{dd}}} }$1000
    传输带宽$W$10~20 MHz
    任务传输距离${d_v}$50~500 m
    下载: 导出CSV

    表  4  DQN相关的参数

    DQN相关参数数值
    记忆池大小(Memory pool size)500
    批大小(Batch size)32
    探索率(Exploration probability)0.1
    学习率(Learning rate)0.001
    下载: 导出CSV
  • MEHRABI M, YOU D, LATZKO V, et al. Device-enhanced MEC: Multi-access edge computing (MEC) aided by end device computation and caching: A survey[J]. IEEE Access, 2019, 7: 166079–166108. doi: 10.1109/ACCESS.2019.2953172
    HABIBI M A, NASIMI M, HAN Bin, et al. A comprehensive survey of RAN architectures toward 5G mobile communication system[J]. IEEE Access, 2019, 7: 70371–70421. doi: 10.1109/ACCESS.2019.2919657
    MAO Yuyi, ZHANG Jun, and LETAIEF K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3590–3605. doi: 10.1109/JSAC.2016.2611964
    HU Xiaoyan, WONG K K, and YANG Kun. Wireless powered cooperation-assisted mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2375–2388. doi: 10.1109/TWC.2018.2794345
    LI Yong, JIN Depeng, HUI Pan, et al. Optimal base station scheduling for device-to-device communication underlaying cellular networks[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(1): 27–40. doi: 10.1109/JSAC.2015.2452415
    AMEMIYA K, AKIYAMA Y, KOBAYASHI K, et al. On-site evaluation of a software cellular based MEC system with downlink slicing technology[C]. The 7th IEEE International Conference on Cloud Networking (CloudNet), Tokyo, Japan, 2018: 1–7. doi: 10.1109/CloudNet.2018.8549380.
    WANG Hansong, LI Xi, JI Hong, et al. Dynamic offloading scheduling scheme for MEC-enabled vehicular networks[C]. 2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Beijing, China, 2018: 206–210. doi: 10.1109/ICCChinaW.2018.8674508.
    张海霞, 李腆腆, 李东阳, 等. 基于车辆行为分析的智能车联网关键技术研究[J]. 电子与信息学报, 2020, 42(1): 36–49. doi: 10.11999/JEIT190820

    ZHANG Haixia, LI Tiantian, LI Dongyang, et al. Research on vehicle behavior analysis based technologies for intelligent vehicular networks[J]. Journal of Electronics &Information Technology, 2020, 42(1): 36–49. doi: 10.11999/JEIT190820
    DING Zhiguo, PENG Mugen, and POOR H V. Cooperative non-orthogonal multiple access in 5G systems[J]. IEEE Communications Letters, 2015, 19(8): 1462–1465. doi: 10.1109/LCOMM.2015.2441064
    GUI Guan, HUANG Hongji, SONG Yiwei, et al. Deep learning for an effective nonorthogonal multiple access scheme[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8440–8450. doi: 10.1109/TVT.2018.2848294
    DING Zhiguo, FAN Pingzhi, and POOR H V. Impact of non-orthogonal multiple access on the offloading of mobile edge computing[J]. IEEE Transactions on Communications, 2019, 67(1): 375–390. doi: 10.1109/TCOMM.2018.2870894
    DING Zhiguo, NG D W K, SCHOBER R, et al. Delay minimization for NOMA-MEC offloading[J]. IEEE Signal Processing Letters, 2018, 25(12): 1875–1879. doi: 10.1109/LSP.2018.2876019
    LIU Gang, WANG Zhiqing, HU Jiewen, et al. Cooperative NOMA broadcasting/multicasting for low-latency and high-reliability 5G cellular V2X communications[J]. IEEE Internet of Things Journal, 2019, 6(5): 7828–7838. doi: 10.1109/JIOT.2019.2908415
    WEI Fanbo, ZHOU Ting, XU Tianheng, et al. Modeling and analysis of two-way relay networks: A joint mechanism using NOMA and network coding[J]. IEEE Access, 2019, 7: 152679–152689. doi: 10.1109/ACCESS.2019.2948656
    DING Zhiguo, XU Jie, DOBRE O, et al. Joint power and time allocation for NOMA–MEC offloading[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 6207–6211. doi: 10.1109/TVT.2019.2907253
    ZHANG Haibo, WANG Zixin, and LIU Kaijian. V2X offloading and resource allocation in SDN-assisted MEC-based vehicular networks[J]. China Communications, 2020, 17(5): 266–283. doi: 10.23919/JCC.2020.05.020
    SITU Z, HO I W H, HOU Yun, et al. The feasibility of NOMA in C-V2X[C]. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, Canada, 2020: 562–567. doi: 10.1109/INFOCOMWKSHPS50562.2020.9163009.
    RABEE F A, DAVASLIOGLU K, and GITLIN R. The optimum received power levels of uplink non-orthogonal multiple access (NOMA) signals[C]. 2017 IEEE 18th Wireless and Microwave Technology Conference (WAMICON), Cocoa Beach, USA, 2017: 1–4. doi: 10.1109/WAMICON.2017.7930242.
    LI Shulei, DU Jianbo, ZHAI Daosen, et al. Task offloading, load balancing, and resource allocation in MEC networks[J]. IET Communications, 2020, 14(9): 1451–1458. doi: 10.1049/iet-com.2018.6122
    YANG Peitong, LI Lixin, LIANG Wei, et al. Latency optimization for multi-user NOMA-MEC offloading using reinforcement learning[C]. 2019 28th Wireless and Optical Communications Conference (WOCC), Beijing, China, 2019: 1–5. doi: 10.1109/WOCC.2019.8770605.
    3GPP. Study on LTE-based V2X services 14.0. 0[R]. 3GPPTR 36.885, 2016.
    LIU Ting, ZHU Zhaowei, GU Junrong, et al. Learn to offload in mobile edge computing[C]. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, USA, 2019: 1–6. doi: 10.1109/GLOBECOM38437.2019.9013853.
    唐伦, 肖娇, 赵国繁, 等. 基于能效的NOMA蜂窝车联网动态资源分配算法[J]. 电子与信息学报, 2020, 42(2): 526–533. doi: 10.11999/JEIT190006

    TANG Lun, XIAO Jiao, ZHAO Guofan, et al. Energy efficiency based dynamic resource allocation algorithm for cellular vehicular based on non-orthogonal multiple access[J]. Journal of Electronics &Information Technology, 2020, 42(2): 526–533. doi: 10.11999/JEIT190006
    ZHU Jianyue, WANG Jiaheng, HUANG Yongming, et al. Resource allocation for hybrid NOMA MEC offloading[J]. IEEE Transactions on Wireless Communications, 2020, 19(7): 4964–4977. doi: 10.1109/TWC.2020.2988532
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1484
  • HTML全文浏览量:  730
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-03
  • 修回日期:  2021-01-04
  • 网络出版日期:  2021-01-08
  • 刊出日期:  2021-04-20

目录

    /

    返回文章
    返回