高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无线物理层密钥生成技术发展及新的挑战

黄开枝 金梁 陈亚军 楼洋明 周游 马克明 许晓明 钟州 张胜军

徐勇军, 杨浩克, 李国军, 陈前斌. 多标签无线供电反向散射通信网络能效优化算法[J]. 电子与信息学报, 2022, 44(10): 3492-3498. doi: 10.11999/JEIT210772
引用本文: 黄开枝, 金梁, 陈亚军, 楼洋明, 周游, 马克明, 许晓明, 钟州, 张胜军. 无线物理层密钥生成技术发展及新的挑战[J]. 电子与信息学报, 2020, 42(10): 2330-2341. doi: 10.11999/JEIT200002
XU Yongjun, YANG Haoke, LI Guojun, CHEN Qianbin. Energy-efficient Optimization Algorithm in Multi-tag Wireless-powered Backscatter Communication Networks[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3492-3498. doi: 10.11999/JEIT210772
Citation: Kaizhi HUANG, Liang JIN, Yajun CHEN, Yangming LOU, You ZHOU, Keming MA, Xiaoming XU, Zhou ZHONG, Shengjun ZHANG. Development of Wireless Physical Layer Key Generation Technology and New Challenges[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2330-2341. doi: 10.11999/JEIT200002

无线物理层密钥生成技术发展及新的挑战

doi: 10.11999/JEIT200002
基金项目: 国家自然科学基金(61521003, 61701538, 61871404, 61801435, 61601514),国家科技重大专项“新一代宽带无线移动通信网”(2018ZX03002002)
详细信息
    作者简介:

    黄开枝:女,1973年出生,教授、博士生导师,研究方向为移动通信网络及信息安全

    金梁:男,1969年出生,教授、博士生导师,研究方向为移动通信网络及信息安全

    许晓明:男,1988年出生,副研究员,研究方向为移动通信网络及信息安全

    通讯作者:

    许晓明 ee_xiaomingxu@sina.com

  • 中图分类号: TN918; TN915.81

Development of Wireless Physical Layer Key Generation Technology and New Challenges

Funds: The National Natural Science Foundation of China (61521003, 61701538,61871404, 61801435, 61601514), The National Science and Technology Major Project (2018ZX03002002)
  • 摘要: 物理层安全技术从信息论安全理论出发,保障通信安全,是实现安全与通信一体化的关键手段,逐渐成为国内外研究热点。该文围绕无线通信物理层密钥生成技术研究,主要聚焦在物理层密钥生成技术的理论模型,机制机理和研究现状,重点对比分析了两种不同类型密钥生成算法,即源型密钥生成算法和信道型密钥生成算法的区别和联系,揭示了物理层密钥技术利用通信信道内在安全属性促进通信安全的实质。特别地,该文给出了一种可行的物理层密钥生成5G工程实现框架。最后,该文展望了物理层密钥生成技术未来可能的研究方向。
  • 随着通信技术的飞速发展以及无线设备的迅猛增长,大量传感器节点或终端设备将会接入到物联网中,如何维持节点的传输效率和解决无线供能将会成为制约物联网大规模部署的关键问题。近年来,学者提出了反向散射通信这一技术用来解决上述问题[1]。反向散射通信通过反向散射设备反射和调制入射的射频波以此进行数据传输,因此,反向散射设备不需要产生主动射频信号以及进行模数转换,从而减小了能量消耗[2]

    资源分配技术通过对发射功率、传输时间以及载波分配等因子进行动态的调整,实现对无线通信资源的合理调度,从而使得系统性能最优,同时满足每个用户的服务质量[3,4]。目前,对反向散射通信的研究已取得了许多有价值的成果[5-13]。文献[5]通过联合优化时间分配和功率分配比,最大化数据传输速率。文献[6]考虑在发射功率约束和传输时间的约束下,通过优化时间分配和波束成形向量,提出了基于块坐标下降法的吞吐量最大化算法。文献[7]考虑反向散射通信网络场景,联合优化反向散射设备的传输时间和功率反射系数,提出了基于连续凸近似的次优迭代算法。文献[8]针对认知反向散射通信网络场景,在保证主系统最低速率的需求下,使得反向散射设备的吞吐量最大化。文献[9]通过联合优化时间调度、功率分配和能量波束向量最大化系统加权和速率。文献[10]提出了一种时间分配和反射系数选择的策略以最大化系统的吞吐量。文献[5-10]主要集中在对系统传输速率的研究,忽略了能耗问题,并且大部分交替迭代算法只能获得次优解。为了实现传输速率与系统能耗之间的平衡关系,文献[11,12]研究了无线供电反向散射通信网络能效优化问题,但单标签场景过于理想。文献[13]将上述问题拓展到多用户系统,然而没有考虑时间分配,无法满足5G差异化业务需求。

    为了解决上述问题,本文针对多标签无线供电反向散射通信网络,研究系统能效最大化的最优功率分配、反射系数及能量收集时间求解问题,主要贡献如下:

    (1) 建立了多标签无线供电反向散射通信网络系统模型。在传输速率约束、能量收集约束、反射系数约束、发射功率约束以及传输时间的约束下,通过对发射功率、反射系数和传输时间的联合优化,提出了多变量耦合的非凸分式能效最大化资源分配问题。

    (2) 为求解上述非凸问题,利用Dinkelbach方法将原问题转化为函数相减的形式;然后利用2次变换方法和变量替换法,将上述问题进一步转化为凸优化问题;最后,通过拉格朗日对偶原理求得全局最优解。

    (3) 仿真结果表明,与现有算法对比,所提算法具有较好的收敛性和能效。

    本文考虑由1个基站、K个标签和1个网关组成的无线供电反向散射通信网络,如图1所示。基站、标签及网关都配备单天线,所有标签具有反向散射电路模块,标签集合定义为kK={1,2,,K}。在时隙T内,基站通过时分多址接入方式给每个标签传输信息,每个标签的传输时间为τk且满足Kk=1τkT,τk0,k。在传输时间τk内,标签通过天线阻抗将接收到的信号分成两部分,一部分反射到网关,另一部分用于标签的自身供能[14];反射信号通过反射信道与网关建立联系,收集的能量信号用于标签自身的供电。假设所有信道满足块衰落信道,即在一个小的时间帧内保持不变,在整个时间过程是时变。

    图 1  系统模型

    假设基站到标签k的信道增益定义为hk,那么标签k的接收信号可以描述为

    yk(τk)=Pkhksk(τk)+nk
    (1)

    其中,Pk表示基站发送给标签k的发射功率;sk(τk)表示在时隙τk基站发送给标签k的信号,且满足E{|sk(τk)|2}=1nkCN(0,σ2k)表示标签k处服从均值为零方差为σ2k的加性高斯白噪声。因此,此时网关的接收信号为

    yRk(τk)=αkgkyk(τk)ck(τk)+Pkhsk(τk)+n
    (2)

    其中,αk表示标签k的反射系数;gk表示标签k到网关的信道增益;ck(τk)表示标签k自身的反射信号,且满足E{|ck(τk)|2}=1nCN(0,σ2)表示网关处服从均值为零方差为σ2的加性高斯白噪声;h表示基站到网关的信道增益。从而标签k传输时,网关接收到的信噪比为γRk=αkgkhkPkαkgkσ2k+Pkh+σ2。其中,分母的第1项为标签自身噪声干扰影响,因为该噪声非常小,在现有文献中经常被忽略[5-8]。因此,网关信噪比可以重新表示为

    ˉγRk=αkgkhkPkPkh+σ2
    (3)

    因此网关的瞬时速率为RRk=log2(1+ˉγRk)

    系统的总能耗为

    Etotal=Kk=1τk[Pk+ECk(1αk)ηkPkhk]
    (4)

    其中,ECk表示标签k的电路功耗;ηk[0,1]表示标签k的能量转换因子。

    考虑在传输速率约束、能量收集约束以及传输时间约束下,建立了能效最大化资源分配问题为

    maxαk,τk,Pk Kk=1τkRRkEtotals.tC1:RRkRR,mink C2:(1αk)ηkPkhkEC,minkC3:0αk1C4:Kk=1PkPmax,Pk0C5:Kk=1τkT,τk0 }
    (5)

    其中,C1表示最小瞬时速率约束,RR,mink表示最小速率门限;C2表示标签k收集的能量大于其消耗的能量,EC,mink为最小能量收集门限;C3表示反射系数αk约束;C4表示发射功率约束,Pmax表示基站的最大发射功率门限;C5表示传输时间约束。式(5)为多变量耦合的分式非凸规划问题,难以求解。

    基于Dinkelbach方法[15],目标函数可以转化为

    f(ηEE)=ˉRtotalηEEEtotal
    (6)

    其中,ηEE0是辅助变量;ˉRtotal = Kk=1τkRRk。当ηEE趋近于无穷大时,f(ηEE)<0成立,否则f(ηEE)0。因此,f(ηEE)是关于ηEE的严格递减的凸函数。当τk,αk,Pk为最优解时

    f(ηEE)=ˉRtotal(τk,αk,Pk)ηEEEtotal(τk,αk,Pk)=0
    (7)

    其中,ηEE = ˉRtotal(τk,αk,Pk)/Etotal(τk,αk,Pk)

    因此,式(5)可以重新表述为

    maxαk,τk,Pk Kk=1{τk{log2(1+αkgkhkPkPkh+σ2)ηEE[Pk+ECk(1αk)ηkPkhk]}s.t.C1C5}
    (8)

    由式(8)可知,传输时间τk仅与约束条件C5有关。因此,首先求出传输时间τk的最优解,然后通过2次变换以及变量替换方法将非凸问题转化为凸优化问题,最后使用拉格朗日对偶理论进行求解。

    根据式(8)分解出关于传输时间τk的子问题为

    maxτk Kk=1{τk{log2(1+αkgkhkPkPkh+σ2)ηEE[Pk+ECk(1αk)ηkPkhk]}s.t.C5:Kk=1τkT,τk0 }
    (9)

    显然,式(9)为线性规划问题,可以通过线性规划求解方法求出最优的传输时间τk

    根据变量替换方法,定义βk=αkPk,式(8)可以重新表示为

    maxβk,Pk Kk=1{τk[log2(1+βkgkhkPkh+σ2)ηEE(Pk+ECkPkhkηk+βkhkηk)]}s.tˉC1:βkgkhk(2RR,mink1)(Pkh+σ2ˉC2:hkηk(Pkβk)EC,minkˉC3:0βkPkˉC4:Kk=1PkPmax,Pk0}
    (10)

    由于目标函数是非凸的,式(10)仍为非凸优化问题,难以求得最优解。根据2次变换方法[16,17],式(10)可以重新描述为

    maxβk,Pk,xk Kk=1{τk[fk(βk,Pk,xk)ηEE(Pk+ECkPkhkηk+βkhkηk)]}s.tˉC1ˉC4}
    (11)

    其中,xk是辅助变量;fk(βk,Pk,xk) = log2[1+2xkβkgkhkx2k(Pkh+σ2)]xk的最优值xk=2βkgkhkPkh+σ2。因此,式(11)可以重新表示为

    maxβk,Pk Kk=1{τk[fk(βk,Pk,xk)ηEE(Pk+ECkPkhkηk+βkhkηk)]}s.tˉC1ˉC4}
    (12)

    式(12)为凸优化问题,可以通过拉格朗日对偶理论对其进行求解。定义Yk={βk,Pk,μk,ωk,εk,ν},式(12)的拉格朗日函数为

    L(Yk)=Kk=1τk[fk(βk,Pk,xk)ηEE(Pk+ECkPkhkηk+βkhkηk)]+Kk=1εk(Pkβk)+ν(PmaxKk=1Pk)+Kk=1μk[βkgkhk(2RR,mink1)(Pkh+σ2)]+Kk=1ωk[hkηk(Pkβk)EC,mink]
    (13)

    其中,μk,ωk,εk,ν表示非负的拉格朗日乘子。式(13)可以重新表示为

    L(Yk) = Kk=1Lk(Yk)+νPmax
    (14)

    其中

    Lk(Yk) = τk[fk(βk,Pk,xk)ηEE(Pk+ECkPkhkηk+βkhkηk)]+εk(Pkβk)νPk+μk[βkgkhk(2RR,mink1)(Pkh+σ2]+ωk[hkηk(Pkβk)EC,mink]
    (15)

    对于给定的能效ηEE,式(14)的对偶问题为

    minμk,ωk,εk,νD(μk,ωk,εk,ν) s.tμk0,ωk0,εk0,ν0}
    (16)

    其中,对偶函数为

    D(μk,ωk,εk,ν) = maxβk,PkL(Yk)
    (17)

    根据卡罗需-库恩-塔克(Karush-Kuhn-Tucker, KKT)条件[18],可以得到如式(18)和式(19)的闭式解

    Pk=[τkln2[ν+μkh(2RR,mink1)εkωkhkηk+τkηEEτkηEEhkηk]+1+2βkgkhkxkhσ2h]+
    (18)
    βk=[τkln2(ηEEhk+ωkηkhk+εkμk)+xk(Pkh+σ2)12gkhk]+
    (19)

    其中,[x]+=max(0,x)。基于梯度下降方法,拉格朗日乘子更新表达式为

    μl+1k=[μlkΔμk×Lk(Yk)μk]+
    (20)
    ωl+1k=[ωlkΔωk×Lk(Yk)ωk]+
    (21)
    εl+1k=[εlkΔεk×Lk(Yk)εk]+
    (22)
    νl+1=[νlΔν×Lk(Yk)ν]+
    (23)

    其中,Lk(Yk)/Lk(Yk)ωkωk = hkηk(Pkβk)EC,mink, Lk(Yk)/Lk(Yk)νν = Pk, Lk(Yk)/Lk(Yk)εkεk = Pkβk, Lk(Yk)/μk = βkgkhk(2RR,mink1)(Pkh+σ2, l表示迭代次数,Δμk, Δωk, Δεk, Δν为大于0的迭代步长。根据Pkβk的关系,可以计算出最优的反射系数αk = βk/βkPkPk。因此,基于迭代的能效最大化资源分配算法如表1所示。

    表 1  基于迭代的能效最大化资源分配算法
     初始化系统参数K,hk,gk,h,σ2,T,Pmax,RR,mink,ECk,EC,mink
     给定初始化能效ηEE,外层迭代次数t=0
     定义算法收敛精度ϖ,外层最大迭代次数为Tmax
     (1) while|R(t)Etotal(t)ηEE(t1)|>ϖtTmax, do
     (2) 初始化迭代步长和拉格朗日乘子,内层最大迭代次数Lmax
       初始化内层迭代次数l = 0
     (3) while 所有拉格朗日乘子的收敛精度大于ϖdo
     (4)   for k = 1:K
     (5)     根据式(18)计算最优功率Pk
     (6)     根据式(19)计算βk
     (7)     计算反射系数αk
     (8)     根据式(20)—式(23)更新拉格朗日乘子
           μk,ωk,εk,ν
     (9)   end for
     (10)   更新l=l+1
     (11) until 收敛或l = Lmax
     (12) end while

     (13) 更新ηEE(t)=Kk=1τkR(t1)Etotal(t1)t=t+1
     (14) end while
     (15) 输出所需优化变量Pk,βk,αk
    下载: 导出CSV 
    | 显示表格

    假设外层能效和内层拉格朗日法的最大迭代次数分别为TmaxLmax。根据梯度下降法,更新μk,ωk,εk,ν需要O(K)O(1)次运算,拉格朗日乘子更新的计算复杂度为O(K+1)。内层迭代次数LmaxO((K+1)Lmax)的多项式函数;外循环使用Dinkelbach方法求解能效的计算复杂度是O(log2(Tmax)/ϖ2)[19]。因此,本文算法的计算复杂度为O{ln(1/˜ϑ)(K+1)Lmaxlog2(Tmax)/ϖ2},其中,˜ϑ表示解的精度。

    在本节中,通过仿真分析验证所提算法的有效性。假设网络中有1个基站、5个标签和1个网关,其中,基站到5个标签的距离分别为4 m, 5 m, 5.5 m, 6 m, 6.5 m,2个标签到网关的距离分别为3 m, 3.5 m, 4 m, 4.5 m, 5 m 。信道模型为dχi, 其中di是基站、标签和网关之间的距离, χ=3表示路径损耗指数[20]T = 1 s, σ2 = 108 W, RR,mink = 0.6 bit/Hz, ηk = 0.7, ϖ = 106, Tmax=104, Lmax=104[21]

    图2描述了本文所提算法的系统能效与迭代次数之间的关系曲线。从图2可以看出,所提算法在经过较少的迭代后趋于收敛。基站到网关之间的距离增大时,系统能效随之增大。这是因为距离增大,基站到网关之间的信道增益h减小,从式(3)可以看出,系统受到的干扰变小。

    图 2  不同信道状态下所提算法的收敛性能

    图3比较了在不同的发射功率门限下的性能。从图3可以看出,随着发射功率门限的增加,系统能效首先增加,随后保持不变。这是因为更大的发射功率门限允许基站具有更大的发射功率,从而提高了系统能效,当发射功率门限Pmax=1 W,1.5 W2 W时,系统能效将会趋于收敛。

    图 3  不同发射功率门限下所提算法的收敛性能

    图4描述了不同发射功率门限下系统能效与标签个数关系。从图4可看出,随着标签个数的增加,系统能效增加。因为,当标签个数增加时,系统的有效传输速率将会提高,导致系统能效增加。当Pmax提高时,系统能效增加。因为基站将会具有更大的发射功率,使得系统能效增加。

    图 4  不同标签个数下所提算法的收敛性能

    图5描述了在不同的标签电路功耗下所提算法的性能。从图5可以看出,本文算法在经过较少的迭代后趋于收敛。随着标签电路功耗的增加,系统能效将会减少。这是因为功耗提高,导致能效降低。

    图 5  不同电路功耗下所提算法的收敛性能

    图6描述了在不同算法下系统能效与发射功率门限之间的关系。本文算法的能效是要高于速率最大算法以及能耗最小算法,并且随着发射功率门限的增加,本文算法首先增长,然后趋于收敛,而速率最大算法先增加再下降,这是因为能耗的增加要高于速率的增加,从而导致系统能效降低。

    图 6  不同算法下系统能效与基站功率门限之间的关系

    图7描述了在不同算法下能量收集门限与系统能效的关系。随着能量收集门限的增加,系统能效会下降。本文算法考虑了速率与能耗之间的权衡,并且以系统能效最大化为目标函数;速率最大算法不包含能耗,能量收集门限对其影响较小;能耗最小算法只考虑了能耗,忽略了传输速率这一指标,因此本文算法的能效要高于另外两种算法。

    图 7  不同算法下能量收集门限与系统能效的关系

    本文研究了多标签无线供电反向散射通信网络能效优化问题,考虑用户速率约束、能量收集约束、反射系数约束、发射功率约束以及传输时间约束,通过对反射系数、传输时间和发射功率的联合优化,建立了基于系统能效最大化的资源分配模型。针对所提优化问题,利用Dinkelbach理论、2次变换及变量替换方法,将原分式非凸问题转化为可求解的凸优化问题,通过拉格朗日对偶法求得最优解。仿真结果表明,本文算法具有较好的能效以及收敛性。

  • 图  1  5G三大典型应用场景

    图  2  源型密钥生成模型

    图  3  信道型密钥生成模型

    图  4  面向集中化处理无线接入网的PLSU在基站侧的实现框图

    图  5  PLSU在终端侧的实现框图

    表  1  源型密钥生成的相关实验总结

    测试环境共享随机源实验床相关文献
    WiFi(IEEE 802.11)CSI,RSSIntel5300NIC, USRP, WARP[14,16-18]
    IoT(IEEE 802.15)RSSMICAz[25], TelosB[26][19,27]
    BluetoothRSS智能手机[20]
    LTERSS智能手机[21]
    下载: 导出CSV

    表  2  源型密钥生成步骤

    步骤功能方法目标
    共享随机源获取为密钥生成提供密钥源互易信道
    接收信号
    一致
    安全
    高效
    量化将共享随机源量化为序列等概量化
    均匀量化
    双门限量化
    矢量量化
    量化比特数量多
    量化误比特率小
    量化序列随机性好
    信息协商删除或纠正错误比特Cascade方法
    纠错编码方法
    纠错能力强
    协商效率高
    信息泄露少
    隐私放大保证密钥安全性和随机性私密信息抽取器
    通用Hash函数
    破解概率低于密钥强度
    通过NIST测试
    下载: 导出CSV
  • 史光坤. LTE/SAE系统密钥管理方案的研究与改进[D]. [博士论文], 吉林大学, 2017.

    SHI Guangkun. The research and improvement of the key management schemes in LTE/SAE system[D]. [Ph. D. dissertation], Jilin University, 2017.
    雷新雨. 新型公开密钥交换算法的理论与应用研究[D]. [博士论文], 重庆大学, 2015.

    LEI Xinyu. Research on theory and application of new-type public key exchange algorithms[D]. [Ph. D. dissertation], Chongqing University, 2015.
    GOKEY M. NSA GCHQ SIM card hack Snowden leak news[EB/OL]. https://www.digitaltrends.com/mobile/nsa-gchq-sim-card-hack-snowden-leak-news/, 2015.
    5G White Paper. 5G: Rethink mobile communications for 2020+[Z]. Future Forum 5G SIG, 2014.
    SHANNON C E. Communication theory of secrecy systems[J]. Bell System Technical Journal, 1949, 28(4): 656–715. doi: 10.1002/j.1538-7305.1949.tb00928.x
    WYNER A D. The wire-tap channel[J]. Bell System Technical Journal, 1975, 54(8): 1355–1387. doi: 10.1002/j.1538-7305.1975.tb02040.x
    ZHANG Junqing, DUONG T Q, MARSHALL A, et al. Key generation from wireless channels: A review[J]. IEEE Access, 2016, 4: 614–626. doi: 10.1109/ACCESS.2016.2521718
    ZHANG Junqing, WOODS R, DUONG T Q, et al. Experimental study on key generation for physical layer security in wireless communications[J]. IEEE Access, 2016, 4: 4464–4477. doi: 10.1109/ACCESS.2016.2604618
    MAURER U M. Secret key agreement by public discussion from common information[J]. IEEE Transactions on Information Theory, 1993, 39(3): 733–742. doi: 10.1109/18.256484
    AHLSWEDE R and CSISZAR I. Common randomness in information theory and cryptography. I. Secret sharing[J]. IEEE Transactions on Information Theory, 1993, 39(4): 1121–1132. doi: 10.1109/18.243431
    HERSHEY J E, HASSAN A A, and YARLAGADDA R. Unconventional cryptographic keying variable management[J]. IEEE Transactions on Communications, 1995, 43(1): 3–6. doi: 10.1109/26.385951
    MARINO F, PAOLINI E, and CHIANI M. Secret key extraction from a UWB channel: Analysis in a real environment[C]. 2014 IEEE International Conference on Ultra-WideBand (ICUWB), Paris, France, 2014: 80–85. doi: 10.1109/ICUWB.2014.6958955.
    HUANG Jingjing and JIANG Ting. Dynamic secret key generation exploiting ultra-wideband wireless channel characteristics[C]. 2015 IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, USA, 2015: 1701–1706. doi: 10.1109/WCNC.2015.7127724.
    LIU Hongbo, WANG Yang, YANG Jie, et al. Fast and practical secret key extraction by exploiting channel response[C]. IEEE International Conference on Computer Communications (INFOCOM), Turin, Italy, 2013: 3048–3056. doi: 10.1109/INFCOM.2013.6567117.
    ZHANG Junqing, MARSHALL A, WOODS R, et al. Efficient key generation by exploiting randomness from channel responses of individual OFDM subcarriers[J]. IEEE Transactions on Communications, 2016, 64(6): 2578–2588. doi: 10.1109/TCOMM.2016.2552165
    MATHUR S, TRAPPE W, MANDAYAM N, et al. Radio-telepathy: Extracting a secret key from an unauthenticated wireless channel[C]. The 14th ACM International Conference on Mobile Computing and Networking, San Francisco, USA, 2008: 128–139. doi: 10.1145/1409944.1409960.
    ZENG Kai, WU D, CHAN An, et al. Exploiting multiple-antenna diversity for shared secret key generation in wireless networks[C]. 2010 Proceedings IEEE INFOCOM, San Diego, USA, 2010: 1–9. doi: 10.1109/INFCOM.2010.5462004.
    WEI Yunchuan, ZENG Kai, and MOHAPATRA P. Adaptive wireless channel probing for shared key generation based on PID controller[J]. IEEE Transactions on Mobile Computing, 2013, 12(9): 1842–1852. doi: 10.1109/TMC.2012.144
    HU Xiaoyan, JIN Liang, HUANG Kaizhi, et al. Physical layer secret key generation scheme based on signal propagation characteristics[J]. Acta Electronica Sinica, 2019, 47(2): 483–488. doi: 10.3969/j.issn.0372-2112.2019.02.032
    PREMNATH S N, GOWDA P L, KASERA S K, et al. Secret key extraction using bluetooth wireless signal strength measurements[C]. The 11th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Singapore, 2014: 293–301. doi: 10.1109/SAHCN.2014.6990365.
    CHEN Kan, NATARAJAN B B, and SHATTIL S. Secret key generation rate with power allocation in relay-based LTE-A networks[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(11): 2424–2434. doi: 10.1109/TIFS.2015.2462756
    HALPERIN D, HU Wenjun, SHETH A, et al. Tool release: Gathering 802.11n traces with channel state information[J]. ACM SIGCOMM Computer Communication Review, 2011, 41(1): 53. doi: 10.1145/1925861.1925870
    NI. USRP E320 (ZYNQ-7045, 2X2, 70 MHZ-6 GHZ, Board Only)–Ettus Research[EB/OL]. https://www.yottavolt.com/shop/usrp-e320-zynq-7045-2x2-70-mhz-6-ghz-board-only-ettus-research/, 2020.
    Wiki. Wireless open-access research platform[EB/OL]. http://warpproject.org/trac/wiki/HardwarePlatform/, 2013.
    Crossbow Technology. MICAz datasheet[EB/OL]. http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf, 2011.
    MEMSC. TelosB datasheet[EB/OL]. http://www.willow.co.uk/TelosB_Datasheet.pdf, 2011.
    WUNDER G, FRITSCHEK R, and REAZ K. RECiP: Wireless channel reciprocity restoration method for varying transmission power[C]. The 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 2016: 1–5. doi: 10.1109/PIMRC.2016.7794581.
    LOU Yangming, JIN Liang, ZHONG Zhou, et al. Secret key generation scheme based on MIMO received signal spaces[J]. Scientia Sinica Informationis, 2017, 47(3): 362–373. doi: 10.1360/N112016-00001
    TAHA H and ALSUSA E. Secret key exchange using private random precoding in MIMO FDD and TDD systems[J]. IEEE Transactions on Vehicular Technology, 2017, 66(6): 4823–4833. doi: 10.1109/TVT.2016.2611565
    TAHA H and ALSUSA E. Secret key exchange under physical layer security using MIMO private random precoding in FDD systems[C]. 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 2016: 1–6. doi: 10.1109/ICC.2016.7511622.
    SHARIFIAN S, LIN Fuchun, and SAFAVI-NAINI R. Secret key agreement using a virtual wiretap channel[C]. IEEE Conference on Computer Communications (INFOCOM), Atlanta, USA, 2017: 1–9. doi: 10.1109/INFOCOM.2017.8057119.
    KHISTI A. Secret-key agreement over non-coherent block-fading channels with public discussion[J]. IEEE Transactions on Information Theory, 2016, 62(12): 7164–7178. doi: 10.1109/TIT.2016.2618861
    ZHANG Shengjun, JIN Ling, LOU Yangming, et al. Secret key generation based on two-way randomness for TDD-SISO system[J]. China Communications, 2018, 15(7): 202–216. doi: 10.1109/CC.2018.8424614
    WU Feilong, WANG Wenjie, WANG Huiming, et al. A unified mathematical model for spatial scrambling based secure wireless communication and its wiretap method[J]. Scientia Sinica Informationis, 2012, 42(4): 483–492. doi: 10.1360/112011-942
    HARRISON W K, ALMEIDA J, BLOCH M R, et al. Coding for secrecy: An overview of error-control coding techniques for physical-layer security[J]. IEEE Signal Processing Magazine, 2013, 30(5): 41–50. doi: 10.1109/MSP.2013.2265141
    NEGI R and GOEL S. Secret communication using artificial noise[C]. VTC-2005-Fall. The 62nd IEEE Vehicular Technology Conference, 2005, Dallas, USA, 2005: 1906–1910. doi: 10.1109/VETECF.2005.1558439.
    GOEL S and NEGI R. Guaranteeing secrecy using artificial noise[J]. IEEE Transactions on Wireless Communications, 2008, 7(6): 2180–2189. doi: 10.1109/TWC.2008.060848
    LI Xiaohua, HWU J, and RATAZZI E P. Array redundancy and diversity for wireless transmissions with low probability of interception[C]. 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, Toulouse, France, 2006: 211–221. doi: 10.1109/ICASSP.2006.1661021.
    LI Xiaohua, HWU J, and RATAZZI E. Using antenna array redundancy and channel diversity for secure wireless transmissions[J]. Journal of Communications, 2007, 2(3): 24–32. doi: 10.4304/jcm.2.3.24-32
    FOUNTZOULAS Y, KOSTA A, and KARYSTINOS G N. Polar-code-based security on the BSC-modeled HARQ in fading[C]. The 23rd International Conference on Telecommunications (ICT), Thessaloniki, Greece, 2016: 1–5. doi: 10.1109/ICT.2016.7500449.
    ZHANG Yingxian, YANG Zhen, LIU Aijun, et al. Secure transmission over the wiretap channel using polar codes and artificial noise[J]. IET Communications, 2017, 11(3): 377–384. doi: 10.1049/iet-com.2016.0429
    BAI Huiqing, JIN Liang, and YI Ming. Artificial noise aided polar codes for physical layer security[J]. China Communications, 2017, 14(12): 15–24. doi: 10.1109/cc.2017.8246334
    TOPAL O A, KURT G K, and ÖZBEK B. Key error rates in physical layer key generation: Theoretical analysis and measurement-based verification[J]. IEEE Wireless Communications Letters, 2017, 6(6): 766–769. doi: 10.1109/LWC.2017.2740290
    ZHANG Junqing, RAJENDRAN S, SUN Zhi, et al. Physical layer security for the internet of things: Authentication and key generation[J]. IEEE Wireless Communications, 2019, 26(5): 92–98. doi: 10.1109/MWC.2019.1800455
    JIN Henglei, HUANG Kaizhi, XIAO Shuaifang, et al. A two-layer secure quantization algorithm for secret key generation with correlated eavesdropping channel[J]. IEEE Access, 2019, 7: 26480–26487. doi: 10.1109/access.2019.2893594
    JIAO Long, WANG Ning, WANG Pu, et al. Physical layer key generation in 5G wireless networks[J]. IEEE Wireless Communications, 2019, 26(5): 48–54. doi: 10.1109/MWC.001.1900061
    ZENG Kai. Physical layer key generation in wireless networks: Challenges and opportunities[J]. IEEE Communications Magazine, 2015, 53(6): 33–39. doi: 10.1109/MCOM.2015.7120014
    JIN Liang, ZHANG Shengjun, LOU Yangming, et al. Secret key generation with cross multiplication of two-way random signals[J]. IEEE Access, 2019, 7: 113065–113080. doi: 10.1109/access.2019.2935206
    LI Guyue, SUN Chen, ZHANG Junqing, et al. Physical layer key generation in 5G and beyond wireless communications: Challenges and opportunities[J]. Entropy, 2019, 21(5): 497. doi: 10.3390/e21050497
    CHEN Xuxing, HE Zunwen, ZHANG Yan, et al. A key generation scheme for wireless communication based on channel characteristics[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(5): 834–840. doi: 10.11805/TKYDA201705.0834
    QIN Dongrun and DING Zhi. Exploiting multi-antenna non-reciprocal channels for shared secret key generation[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(12): 2693–2705. doi: 10.1109/TIFS.2016.2594143
    LI Guyue, HU Aiqun, SUN Chen, et al. Constructing reciprocal channel coefficients for secret key generation in FDD systems[J]. IEEE Communications Letters, 2018, 22(12): 2487–2490. doi: 10.1109/LCOMM.2018.2875708
    LI Shanshan, CHENG Mengfan, DENG Lei, et al. Secure key distribution strategy in OFDM-PON by utilizing the redundancy of training symbol and digital chaos technique[J]. IEEE Photonics Journal, 2018, 10(2): 7201108. doi: 10.1109/jphot.2018.2815001
    ZHAO Jun. A survey of reconfigurable intelligent surfaces: Towards 6G wireless communication networks with massive MIMO 2.0[J]. arXiv, 2019, 1907.04789v1.
    DI RENZO M, DEBBAH M, PHAN-HUY D T, et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019(1): 129. doi: 10.1186/s13638-019-1438-9
  • 期刊类型引用(9)

    1. 欧丰林,林淑彬. 融合高斯混合模型和深度学习的目标跟踪. 吉林师范大学学报(自然科学版). 2020(01): 127-134 . 百度学术
    2. 张明月,王静. 基于深度学习的交互似然目标跟踪算法. 计算机科学. 2019(02): 279-285 . 百度学术
    3. 马义超,赵运基,张新良. 基于PCA初始化卷积核的CNN手写数字识别算法. 计算机工程与应用. 2019(13): 134-139 . 百度学术
    4. 蔡楠,李萍. 基于KPCA初始化卷积神经网络的方法. 计算机技术与发展. 2019(07): 76-79 . 百度学术
    5. 张烁,张荣. 基于卷积神经网络模型的手写数字辨识算法研究. 计算机应用与软件. 2019(08): 172-176+261 . 百度学术
    6. 毕笃彦,王世平,刘坤,何林远. 基于并行映射卷积网络的超分辨率重建算法. 系统工程与电子技术. 2018(08): 1873-1880 . 百度学术
    7. 韩东,王学军. 基于改进的卷积神经网络多姿态人脸识别研究. 吉林大学学报(信息科学版). 2018(05): 376-381 . 百度学术
    8. 梁蒙蒙,周涛,张飞飞,杨健,夏勇. 卷积神经网络及其在医学图像分析中的应用研究. 生物医学工程学杂志. 2018(06): 977-985 . 百度学术
    9. 樊养余,李祖贺,王凤琴,马江涛. 基于跨领域卷积稀疏自动编码器的抽象图像情绪性分类. 电子与信息学报. 2017(01): 167-175 . 本站查看

    其他类型引用(32)

  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  2668
  • HTML全文浏览量:  1200
  • PDF下载量:  355
  • 被引次数: 41
出版历程
  • 收稿日期:  2020-01-02
  • 修回日期:  2020-08-07
  • 网络出版日期:  2020-08-21
  • 刊出日期:  2020-10-13

目录

/

返回文章
返回