高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超像素级卷积神经网络的多聚焦图像融合算法

聂茜茜 肖斌 毕秀丽 李伟生

聂茜茜, 肖斌, 毕秀丽, 李伟生. 基于超像素级卷积神经网络的多聚焦图像融合算法[J]. 电子与信息学报, 2021, 43(4): 965-973. doi: 10.11999/JEIT191053
引用本文: 聂茜茜, 肖斌, 毕秀丽, 李伟生. 基于超像素级卷积神经网络的多聚焦图像融合算法[J]. 电子与信息学报, 2021, 43(4): 965-973. doi: 10.11999/JEIT191053
Xixi NIE, Bin XIAO, Xiuli BI, Weisheng LI. Multi-focus Image Fusion Algorithm Based on Super Pixel Level Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(4): 965-973. doi: 10.11999/JEIT191053
Citation: Xixi NIE, Bin XIAO, Xiuli BI, Weisheng LI. Multi-focus Image Fusion Algorithm Based on Super Pixel Level Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2021, 43(4): 965-973. doi: 10.11999/JEIT191053

基于超像素级卷积神经网络的多聚焦图像融合算法

doi: 10.11999/JEIT191053
基金项目: 国家重点研发计划(2016YFC1000307-3),国家自然科学基金(61976031, 61806032)
详细信息
    作者简介:

    聂茜茜:女,1992年生,博士,研究方向为图像处理、深度学习

    肖斌:男,1982年生,教授,研究方向为图像处理、模式识别和数字水印

    毕秀丽:女,1982年生,副教授,研究方向为图像处理、多媒体安全和图像取证

    李伟生:男,1975年生,教授,研究方向为智能信息处理与模式识别

    通讯作者:

    肖斌 xiaobin@cqupt.edu.cn

  • 1) Cifar-10: <http://www.cs.toronto.edu/~kriz/cifar.html>2) Lytro: <https://github.com/xudif/Multi-focus-Image-Fusion-Dataset>
  • 1) 融合示例:<https://github.com/sametaymaz/Multi-focus-Image-Fusion-Dataset>
  • 中图分类号: TN911.73; TP751

Multi-focus Image Fusion Algorithm Based on Super Pixel Level Convolutional Neural Network

Funds: The National Key Research and Development Project of China (2016YFC1000307-3), The National Natural Science Foundation of China (61976031, 61806032)
  • 摘要: 该文提出了基于超像素级卷积神经网络(sp-CNN)的多聚焦图像融合算法。该方法首先对源图像进行多尺度超像素分割,将获取的超像素输入sp-CNN,并对输出的初始分类映射图进行连通域操作得到初始决策图;然后根据多幅初始决策图的异同获得不确定区域,并利用空间频率对其再分类,得到阶段决策图;最后利用形态学对阶段决策图进行后处理,并根据所得的最终决策图融合图像。该文算法直接利用超像素分割块进行图像融合,其相较以往利用重叠块的融合算法可达到降低时间复杂度的目的,同时可获得较好的融合效果。
  • 图  1  图像块选取

    图  2  图像数据集的创建

    图  3  sp-CNN网络结构

    图  4  融合算法流程图

    图  5  超像素补零,(a)预融合图像的分割图;(b)两幅源图像的分割图;(c)局部区域;(d)不属于同一区域的像素补零

    图  6  源图像和融合图像

    图  7  各种方法融合图像的局部放大图

    图  8  3对多聚焦源图像

    图  9  各方法的融合图像

    图  10  对比方法的融合图像

    表  1  融合图像的客观评价值

    算法S1S2S3
    ${Q_{{\rm{MI}}}}$${Q_{\rm{P}}}$${Q_{\rm{w}}}$${Q_{{\rm{af}}}}$${Q_{{\rm{MI}}}}$${Q_{\rm{P}}}$${Q_{\rm{w}}}$${Q_{{\rm{af}}}}$${Q_{{\rm{MI}}}}$${Q_{\rm{P}}}$${Q_{\rm{w}}}$${Q_{{\rm{af}}}}$
    DCT+C+V8.38690.58970.81300.63427.01610.61640.77040.66049.36050.75330.94690.7790
    DSIFT10.52210.71770.84160.740810.59920.76870.82260.782711.18470.81530.94760.8296
    GF10.08790.71380.84250.73779.62050.75770.81840.775511.12960.81530.94780.8295
    IM10.16180.70820.83920.73329.74180.74950.81120.768211.05510.81150.94510.8262
    PCNN9.76140.61530.80780.65199.88950.69270.71860.717911.13110.78050.93180.8033
    p-CNN10.48850.71710.84100.740310.60640.76550.82070.779711.18510.81540.94760.8296
    本文方法10.47500.71840.84260.741710.57670.76890.82450.783211.17830.81560.94770.8298
    下载: 导出CSV

    表  2  对比方法的平均运行时间(s)

    方法320×240480×360640×480
    DCT+C+V0.820.931.12
    DSIFT1.933.896.48
    GF0.852.816.74
    IM10.5924.2538.18
    PCNN0.711.823.16
    p-CNN1.973.916.62
    本文方法1.152.534.14
    下载: 导出CSV

    表  3  融合图像的客观评价值

    PSNRSSIMRMSEGS
    DCT+C+V26.150170.882630.014570.98793
    DSIFT28.092340.905250.015520.98890
    GF28.108490.905690.015340.98894
    IM27.894340.903440.015270.98885
    PCNN27.668420.902570.014580.98872
    p-CNN28.094900.905370.015510.98890
    本文方法28.109250.905710.015320.98893
    下载: 导出CSV
  • RAO Yizhou, HE Lin, and ZHU Jiawei. A residual convolutional neural network for pan-shaprening[C]. 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP), Shanghai, China, 2017: 1–4. doi: 10.1109/RSIP.2017.7958807.
    YIN Ming, LIU Xiaoning, LIU Yu, et al. Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(1): 49–64. doi: 10.1109/TIM.2018.2838778
    朱浩然, 刘云清, 张文颖. 基于灰度变换与两尺度分解的夜视图像融合[J]. 电子与信息学报, 2019, 41(3): 640–648. doi: 10.11999/JEIT180407

    ZHU Haoran, LIU Yunqing, and ZHANG Wenying. Night-vision image fusion based on intensity transformation and two-scale decomposition[J]. Journal of Electronics &Information Technology, 2019, 41(3): 640–648. doi: 10.11999/JEIT180407
    PETROVIC V S and XYDEAS C S. Gradient-based multiresolution image fusion[J]. IEEE Transactions on Image Processing, 2004, 13(2): 228–237. doi: 10.1109/TIP.2004.823821
    LEWIS J J, O’CALLAGHAN R J, NIKOLOV S G, et al. Pixel- and region-based image fusion with complex wavelets[J]. Information Fusion, 2007, 8(2): 119–130. doi: 10.1016/j.inffus.2005.09.006
    ZHANG Qiang and GUO Baolong. Multifocus image fusion using the nonsubsampled contourlet transform[J]. Signal Processing, 2009, 89(7): 1334–1346. doi: 10.1016/j.sigpro.2009.01.012
    LI Shutao, KANG Xudong, FANG Leyuan, et al. Pixel-level image fusion: A survey of the state of the art[J]. Information Fusion, 2017, 33: 100–112. doi: 10.1016/j.inffus.2016.05.004
    LI Shutao, KANG Xudong, and HU Jianwen. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864–2875. doi: 10.1109/TIP.2013.2244222
    LI Shutao, KANG Xudong, HU Jianwen, et al. Image matting for fusion of multi-focus images in dynamic scenes[J]. Information Fusion, 2013, 14(2): 147–162. doi: 10.1016/j.inffus.2011.07.001
    LIU Yu, LIU Shuping, and WANG Zengfu. Multi-focus image fusion with dense SIFT[J]. Information Fusion, 2015, 23: 139–155. doi: 10.1016/j.inffus.2014.05.004
    WANG Zhaobin, MA Yide, and GU J. Multi-focus image fusion using PCNN[J]. Pattern Recognition, 2010, 43(6): 2003–2016. doi: 10.1016/j.patcog.2010.01.011
    LIU Yu, CHEN Xun, PENG Hu, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 2017, 36: 191–207. doi: 10.1016/j.inffus.2016.12.001
    TANG Han, XIAO Bin, LI Weisheng, et al. Pixel convolutional neural network for multi-focus image fusion[J]. Information Sciences, 2018, 433/434: 125–141. doi: 10.1016/j.ins.2017.12.043
    ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274–2282. doi: 10.1109/TPAMI.2012.120
    REN Xiaofeng and MALIK J. Learning a classification model for segmentation[C]. The 9th IEEE International Conference on Computer Vision, Nice, France, 2003: 10–17. doi: 10.1109/ICCV.2003.1238308.
    ESKICIOGLU A M and FISHER P S. Image quality measures and their performance[J]. IEEE Transactions on Communications, 1995, 43(12): 2959–2965. doi: 10.1109/26.477498
    SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/TPAMI.2015.2389824
    肖斌, 唐翰, 徐韵秋, 等. 基于Hess矩阵的多聚焦图像融合方法[J]. 电子与信息学报, 2018, 40(2): 255–263. doi: 10.11999/JEIT170497

    XIAO Bin, TANG Han, XU Yunqiu, et al. Multi-focus image fusion based on Hess matrix[J]. Journal of Electronics &Information Technology, 2018, 40(2): 255–263. doi: 10.11999/JEIT170497
    CAO Liu, JIN Longxu, TAO Hongjiang, et al. Multi-focus image fusion based on spatial frequency in discrete cosine transform domain[J]. IEEE Signal Processing Letters, 2015, 22(2): 220–224. doi: 10.1109/LSP.2014.2354534
    LIU Zheng, BLASCH E, XUE Zhiyun, et al. Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: A comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(1): 94–109. doi: 10.1109/TPAMI.2011.109
    WANG Zhou and LI Qiang. Information content weighting for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(5): 1185–1198. doi: 10.1109/TIP.2010.2092435
    ZHAO Yuxin, JIA Renfeng, and SHI Peng. A novel combination method for conflicting evidence based on inconsistent measurements[J]. Information Sciences, 2016, 367/368: 125–142. doi: 10.1016/j.ins.2016.05.039
    LIU Anmin, LIN Weisi, and NARWARIA M. Image quality assessment based on gradient similarity[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1500–1512. doi: 10.1109/TIP.2011.2175935
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1793
  • HTML全文浏览量:  863
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-30
  • 修回日期:  2020-10-28
  • 网络出版日期:  2020-12-12
  • 刊出日期:  2021-04-20

目录

    /

    返回文章
    返回