高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最小位移可视差的连续Seam Carving算法在图像缩放中的研究

崔嘉 宋磊 陆宏菊 唐明晰 戚萌

崔嘉, 宋磊, 陆宏菊, 唐明晰, 戚萌. 基于最小位移可视差的连续Seam Carving算法在图像缩放中的研究[J]. 电子与信息学报, 2021, 43(4): 1014-1021. doi: 10.11999/JEIT191050
引用本文: 崔嘉, 宋磊, 陆宏菊, 唐明晰, 戚萌. 基于最小位移可视差的连续Seam Carving算法在图像缩放中的研究[J]. 电子与信息学报, 2021, 43(4): 1014-1021. doi: 10.11999/JEIT191050
Jia CUI, Lei SONG, Hongju LU, Mingxi TANG, Meng QI. Continuous Seam Carving Algorithm Based on Just Noticeable Distortion Algorithm in Image Retargeting[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1014-1021. doi: 10.11999/JEIT191050
Citation: Jia CUI, Lei SONG, Hongju LU, Mingxi TANG, Meng QI. Continuous Seam Carving Algorithm Based on Just Noticeable Distortion Algorithm in Image Retargeting[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1014-1021. doi: 10.11999/JEIT191050

基于最小位移可视差的连续Seam Carving算法在图像缩放中的研究

doi: 10.11999/JEIT191050
基金项目: 国家自然科学基金(61902225, 61502285),山东省青年基金(ZR2014FQ013)
详细信息
    作者简介:

    崔嘉:男,1982年生,副教授,研究方向为图像处理、计算机辅助设计、智能设计

    宋磊:男,1993年生,硕士生,研究方向为图像处理

    陆宏菊:女,1982年生,讲师,研究方向为图像处理、语义分析

    唐明晰:男,1956年生,教授,研究方向为智能设计、设计推理、计算机图形学

    戚萌:女,1983年生,讲师,研究方向为虚拟现实、计算机图形学

    通讯作者:

    戚萌 qimeng@sdnu.edu.cn

  • 中图分类号: TP391.41

Continuous Seam Carving Algorithm Based on Just Noticeable Distortion Algorithm in Image Retargeting

Funds: The National Natural Science Foundation of China (61902225, 61502285), The Natural Science Foundation of Shandong Province (ZR2014FQ013)
  • 摘要: 图像缩放技术要求对图像缩放的同时保证重要信息不丢失且物体边缘不发生扭曲。近年来,Seam Carving及其改进算法得到了广泛的关注和研究。由于采用了离散式最小能量线迭代搜索策略,缩放信息无法在迭代过程中传递导致扭曲现象普遍存在。该文针对上述问题提出最小位移可视差(JND)检测算法,能够有效地检测每一次迭代中出现的潜在扭曲信息。能量权重$ {E}_{w} $能够将JND信息累加传递给后续的迭代过程,从而抑制缩放过程中的边缘扭曲现象。通过JND算法和能量权重,该文首次将离散的Seam Carving模型转变为连续缩放模型。最后,在公共数据集RetargetMe上与最新的图像缩放算法进行多组对比实验,验证了所提方法的有效性和先进性。
  • 图  1  传统SC模型与本文模型对比图

    图  2  连续SC缩放模型处理流程

    图  3  SC改进算法定量对比实验

    图  4  像素级扭曲度对比

    图  5  图像缩放算法定量对比实验

    表  1  连续Seam Carving图像缩放算法

     输入:目标图像, Iin,缩放比例参数, n
     输出:缩放结果图像,Iout
     1: repeat
     2: 根据式(11)计算${f_{{\rm{en}}}}$
     3: 根据式(12)计算$E_{{w}}^{\rm{i}}$
     4: 微小缩放I2I1至相同大小
     5: 根据式(9)和式(10)计算ui
     6: 进行缝合计算
     7: 更新缩放参数
     8: until seamnum=n
    下载: 导出CSV

    表  2  图像缩放定量对比

    CropSCSNSWARPDISJNDCONJND
    Sift-flow0.370.570.690.380.590.79
    ARS0.940.890.900.890.890.91
    Vssm0.250.680.680.750.650.42
    下载: 导出CSV
  • 梁晓萍, 郭振军, 朱昌洪. 基于头脑风暴优化算法的BP神经网络模糊图像复原[J]. 电子与信息学报, 2019, 41(12): 2980–2986. doi: 10.11999/JEIT190261

    LIANG Xiaoping, GUO Zhenjun, and ZHU Changhong. BP neural network fuzzy image restoration basedon brain storming optimization algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2980–2986. doi: 10.11999/JEIT190261
    罗洪艳, 朱子岩, 林睿, 等. 基于掩盖效应和梯度信息的无参考噪声图像质量评价改进算法[J]. 电子与信息学报, 2019, 41(1): 210–218. doi: 10.11999/JEIT180195

    LUO Hongyan, ZHU Ziyan, LIN Rui, et al. Improved no-reference noisy image quality assessment based on masking effect and gradient information[J]. Journal of Electronics &Information Technology, 2019, 41(1): 210–218. doi: 10.11999/JEIT180195
    LIU Hong, XU Bin, LU Dianjie, et al. A path planning approach for crowd evacuation in buildings based on improved artificial bee colony algorithm[J]. Applied Soft Computing, 2018, 68: 360–376. doi: 10.1016/j.asoc.2018.04.015
    LIU Hong, LIU Baoxi, and ZHANG Hao. Crowd evacuation simulation approach based on navigation knowledge and two-layer control mechanism[J]. Information Sciences, 2018, 436/437: 247–267. doi: 10.1016/j.ins.2018.01.023
    AVIDAN S and SHAMIR A. Seam carving for content-aware image resizing[C]. ACM SIGGRAPH 2007, San Diego, USA, 2007. doi: 10.1145/1275808.1276390.
    ZHANG Lixia, LI Kangshun, QU Zhaoming, et al. Seam warping: A new approach for image retargeting for small displays[J]. Soft Computing, 2017, 21(2): 447–457. doi: 10.1007/s00500-015-1795-1
    SHAO Feng, LIN Wenchong, LIN Weisi, et al. QoE-guided warping for stereoscopic image retargeting[J]. IEEE Transactions on Image Processing, 2017, 26(10): 4790–4805. doi: 10.1109/TIP.2017.2721546
    HASHEMZADEH M, ASHEGHI B, and FARAJZADEH N. Content-aware image resizing: An improved and shadow-preserving seam carving method[J]. Signal Processing, 2019, 155: 233–246. doi: 10.1016/j.sigpro.2018.09.037
    LI Chenyang, HU Ruimin, LIANG Chao, et al. Faster seam carving for video retargeting[C]. The 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 2018: 823–827. doi: 10.1109/ICIP.2018.8451794.
    ZHOU Bin, WANG Xuanyin, CAO Songxiao, et al. Optimal bi-directional seam carving for compressibility-aware image retargeting[J]. Journal of Visual Communication and Image Representation, 2016, 41: 21–30. doi: 10.1016/j.jvcir.2016.09.002
    SHAFIEYAN F, KARIMI N, MIRMAHBOUB B, et al. Image retargeting using depth assisted saliency map[J]. Signal Processing: Image Communication, 2017, 50: 34–43. doi: 10.1016/j.image.2016.10.006
    LU Hongju, YUE Pengfei, ZHAO Yanhui, et al. Contour sensitive saliency and depth application in image retargeting[J]. SPIE Ninth International Conference on Graphic and Image Processing, 2017: 10615. doi: 10.1117/12.2303573.
    岳朋飞, 王化雨, 郑元杰, 等. 结合边缘模糊的景深显著性在图像缩放中的研究[J]. 计算机辅助设计与图形学学报, 2018, 30(3): 415–423.

    YUE Pengfei, WANG Huayu, ZHENG Yuanjie, et al. Image retargeting using blur based depth saliency descriptor[J]. Journal of Computer-Aided Design &Computer Graphics, 2018, 30(3): 415–423.
    RUBINSTEIN M, GUTIERREZ D, SORKINE O, et al. A comparative study of image retargeting[J]. ACM Transactions on Graphics, 2010, 29(6): 160. doi: 10.1145/1866158.1866186
    HAREL J, KOCH C, and PERONA P. Graph-based visual saliency[C]. The 19th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2006: 545–552.
    ITTI L, KOCH C, and NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254–1259. doi: 10.1109/34.730558
    YAN Qiong, XU Li, SHI Jianping, et al. Hierarchical saliency detection[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 1155–1162.
    ITO I. Gradient-based global features for seam carving[J]. Eurasip Journal on Image and Video Processing, 2016, 2016(1): 27. doi: 10.1186/s13640-016-0130-9
    FANG Yuming, FANG Zhijun, YUAN Feiniu, et al. Optimized multioperator image retargeting based on perceptual similarity measure[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(1): 2956–2966. doi: 10.1109/TSMC.2016.2557225
    WEI Daiyan, CHOU Y C, and SU P C. A multi-operator retargeting scheme for compressed videos[C]. 2018 IEEE International Conference on Consumer Electronics, Taichung, China, 2018: 1–12. doi: 10.1109/ICCE-China.2018.8448819.
    HAN Rong, KE Yongzhen, DU Ling, et al. Exploring the location of object deleted by seam-carving[J]. Expert Systems with Applications, 2018, 95: 162–171. doi: 10.1016/j.eswa.2017.11.023
    XU Jinlan, KANG Hongmei, and CHEN Falai. Content-aware image resizing using quasi-conformal mapping[J]. The Visual Computer, 2018, 34(3): 431–442. doi: 10.1007/s00371-017-1350-4
    XU Li, JIA Jiaya, and MATSUSHITA Y. Motion detail preserving optical flow estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(9): 1744–1757. doi: 10.1109/TPAMI.2011.236
    GEIGER D and GIROSI F. Parallel and deterministic algorithms from MRFs: Surface reconstruction and integration[C]. The 1st European Conference on Computer Vision, Antibes, France, 1990: 89–98. doi: 10.1007/BFb0014854.
    SHI Jianping, XU Li, and JIA Jiaya. Just noticeable defocus blur detection and estimation[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 657–665.
    WANG Y S, TAI C L, SORKINE O, et al. Optimized scale-and-stretch for image resizing[J]. ACM Transactions on Graphics, 2008, 27(5): 118. doi: 10.1145/1457515.1409071
    LIU Ce, YUEN J, and TORRALBA A. SIFT flow: Dense correspondence across scenes and its applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 978–994. doi: 10.1109/TPAMI.2010.147
    ZHANG Yabin, FANG Yuming, LIN Weisi, et al. Backward registration-based aspect ratio similarity for image retargeting quality assessment[J]. IEEE Transactions on Image Processing, 2016, 25(9): 4286–4297. doi: 10.1109/TIP.2016.2585884
    ZHANG Yabin, LIN Weisi, LI Qiaohong, et al. Multiple-level feature-based measure for retargeted image quality[J]. IEEE Transactions on Image Processing, 2018, 27(1): 451–463. doi: 10.1109/TIP.2017.2761556
    ZHOU Zeqi, DUAN Chenda, and CUI Jia. The multi-modality content-aware retargeting algorithm and variable scale similarity measurement for image retargeting[C]. The 2nd International Conference on Advances in Image Processing, Chengdu, China, 2018: 73–77.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1184
  • HTML全文浏览量:  594
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-30
  • 修回日期:  2020-10-23
  • 网络出版日期:  2020-12-11
  • 刊出日期:  2021-04-20

目录

    /

    返回文章
    返回