高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于切比雪夫-迹迭代的大规模MIMO系统软输出信号检测

景小荣 文晶晶 雷维嘉

景小荣, 文晶晶, 雷维嘉. 基于切比雪夫-迹迭代的大规模MIMO系统软输出信号检测[J]. 电子与信息学报, 2021, 43(2): 372-379. doi: 10.11999/JEIT191048
引用本文: 景小荣, 文晶晶, 雷维嘉. 基于切比雪夫-迹迭代的大规模MIMO系统软输出信号检测[J]. 电子与信息学报, 2021, 43(2): 372-379. doi: 10.11999/JEIT191048
Xiaorong JING, Jingjing WEN, Weijia LEI. Soft Output Signal Detection for Massive MIMO Systems Based on Chebyshev Trace Iteration[J]. Journal of Electronics & Information Technology, 2021, 43(2): 372-379. doi: 10.11999/JEIT191048
Citation: Xiaorong JING, Jingjing WEN, Weijia LEI. Soft Output Signal Detection for Massive MIMO Systems Based on Chebyshev Trace Iteration[J]. Journal of Electronics & Information Technology, 2021, 43(2): 372-379. doi: 10.11999/JEIT191048

基于切比雪夫-迹迭代的大规模MIMO系统软输出信号检测

doi: 10.11999/JEIT191048
基金项目: 国家自然科学基金(61701062),重庆市基础与前沿研究计划项目(cstc2019jcyj-msxmX0079)
详细信息
    作者简介:

    景小荣:男,1974年生,博士,教授,博士生导师,主要研究方向为MIMO、毫米波等系统中的信号处理

    文晶晶:女,1995年生,硕士生,研究方向为大规模MIMO系统中信号检测

    雷维嘉:男,1969年生,博士,教授,主要研究方向无线通信传输技术

    通讯作者:

    景小荣 jingxr@cqupt.edu.cn

  • 中图分类号: TN911.7; TN92

Soft Output Signal Detection for Massive MIMO Systems Based on Chebyshev Trace Iteration

Funds: The National Natural Science Foundation of China(61701062), Chongqing Research Program of Basic Research and Frontier Technology (cstc2019jcyj-msxmX0079)
  • 摘要:

    在多用户大规模多输入多输出(MIMO)系统信号检测算法中,最小均方误差(MMSE)算法可取得近似最优性能,但MMSE算法中高维矩阵求逆的复杂度过高,导致在实际应用中难以快速有效地实现。同时,对于高阶正交幅度调制(HQAM),如果符号向比特的解映射采用硬判决,将会导致后续信道译码的性能明显下降。因此,该文针对采用格雷编码的HQAM的多用户大规模MIMO系统,提出一种基于切比雪夫-迹迭代(CTI)的低复杂度软输出信号检测算法。该算法不但有效地规避了信号检测所需的高维矩阵求逆,同时,利用格雷编码的调制信号的比特翻转特性和二叉树结构,给出了一种融合三叉链表搜索的比特对数似然比(LLR)简化计算方法。仿真结果表明,该文所提的软输出信号检测算法最多需要3次迭代就能收敛并可取得接近MMSE算法的性能,在复杂度和性能之间取得了很好的折中。

  • 图  1  格雷编码的16-PAM信号分组过程

    图  2  三叉链表结点示意图

    图  3  各种算法浮点运算次数与用户个数的关系(256-QAM)

    图  4  收敛性能曲线图

    图  5  检测性能随SNR变化的曲线图

    图  6  检测性能随基站天线数变化的曲线图

    图  7  各算法随用户数变化的性能对比

    表  1  基于CTI的软输出检测算法的步骤

     输入:${{y}}{\rm{,}}{{H}},K,N,m,{\sigma ^2},T$
     初始化:${\overset{\frown}{{y} }} = {{{H}}^{\rm T}}{{y}};$${{W} } = { {{H} }^{\rm{T} } }{{H} } + \dfrac{ { {\sigma ^2} } }{2}{ {{I} }_{2K} }$; ${{D}}{\rm{ = Diag\{ }}{{W}}{\rm{\} }};$${{{x}}^{(0)}} = {{{D}}^{ - 1}}{\overset{\frown}{{y} }};$
     ${ {{x} }^{(1)} } = \left({ {{I} }_{2K} } - \dfrac{w}{ { {\rm{Tr} } ({{W} })} }{{W} }\right){ {{x} }^{(0)} } + \dfrac{w}{ { {\rm{Tr} } ({{W} })} }{\overset{\frown}{{y} } };{{ } }$ ${\rm{Tr} } ({{W} }) = \displaystyle\sum\limits_{n = 1}^{2K} { {W_{nn} } } ;$
     ${\eta _{\max }} = N{(1 + \sqrt {{K / N}} )^2}$; ${\eta _{\min }} = N{(1 - \sqrt {{K / N}} )^2}$; $w = {{2{\rm{Tr}} ({{W}})} / {({\eta _{\max }} + {\eta _{\min }})}}$; $f{\rm{ = 1/}}\left| {1 - {{w \cdot {\eta _{\min }}} / {{\rm{Tr}} ({{W}})}}} \right|$; ${C_0}(f) = 1;\;{C_1}(f) = f$
     (1) ${\rm{for} }$ $t = 1,2, ··· ,T - 1$
     (2) ${C_{t + 1}}(f) = 2f{C_t}(f) - {C_{t - 1}}(f)$
     (3) ${\lambda _{t + 1}} = {{2f{C_t}(f)} / {{C_{t + 1}}(f)}}$
     (4) ${ {{x} }^{(t + 1)} } = {\lambda _{t + 1} }\left(\left({ {{I} }_{2K} } - \frac{w}{ { {\rm{Tr} } ({{W} })} }{{W} }\right){ {{x} }^{(t)} } + \frac{w}{ { {\rm{Tr} } ({{W} })} }{\overset{\frown}{{y} } } - { {{x} }^{(t - 1)} }\right) + { {{x} }^{(t - 1)} }$
     (5) $t = t + 1$
     (6) ${\rm{end \;for} }$
     (7) ${\rm{for} }$ $i = 1,2, ··· ,2K$
     (8) ${\rm{for} }$ $r = 1,2, ··· ,m$
     (9)确定式(17) ${s^{\rm ML} }$及其下标${q^{{\rm{ML}} }}$和${s^{\rm ML} }$对应的格雷编码矢量${ {{b} }^ * } = (b_m^*\;b_{m - 1}^*\, ··· b_1^ * )$;
     (10)查询三叉链表获得$b_r^ * $对应的${B_r}$的值及其奇偶性
     (11) ${\rm{if} }$ ${B_r}$是偶数
     (12) $q_r^ * = {2^{r - 1}}({B_r} + 1)$
     (13) ${\rm{else} }$
     (14) $q_r^ * = {2^{r - 1}}{B_r} - 1$
     (15) ${\rm{end \;if} }$
     (16) $L_{i,r}^{(T)} = {( - 1)^{b_r^ * } } \cdot { { {W_{ii} } } }/{ { {\sigma ^2} } } \cdot \left( { { {\left| {x_i^{(T)} - {s_{q_r^ * } } } \right|}^2} - { {\left| {x_i^{(T)} - {s^{\rm ML} } } \right|}^2} } \right)$
     (17) $r = r + 1$
     (18) ${\rm{end \;for} }$
     (19) $i = i + 1$
     (20) ${\rm{end \;for} }$
     (21) $L_{i,r}^{(T)}$
    下载: 导出CSV
  • ALBREEM M A, JUNTTI M, and SHAHABUDDIN S. Massive MIMO detection techniques: A survey[J]. IEEE Communications Surveys & Tutorials, 2019, 21(4): 3109–3132. doi: 10.1109/COMST.2019.2935810
    LI Peng and MURCH R D. Multiple output selection-LAS algorithm in large MIMO systems[J]. IEEE Communications Letters, 2010, 14(5): 399–401. doi: 10.1109/LCOMM.2010.05.100092
    DATTA T, SRINIDHI N, CHOCKALINGAM A, et al. Random-restart reactive tabu search algorithm for detection in large-MIMO systems[J]. IEEE Communications Letters, 2010, 14(12): 1107–1109. doi: 10.1109/LCOMM.2010.101210.101587
    TAN Xiaosi, UENG Y L, ZHANG Zaichen, et al. A low-complexity massive MIMO detection based on approximate expectation propagation[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7260–7272. doi: 10.1109/TVT.2019.2924952
    金思年, 岳殿武, 闫秋娜. 基于迫零方式下带有硬件损害的大规模MIMO全双工中继系统[J]. 电子与信息学报, 2019, 41(6): 1352–1358. doi: 10.11999/JEIT180228

    JIN Sinian, YUE Dianwu, and YAN Qiuna. Massive MIMO full-duplex relaying with hardware impairments and zero-forcing processing[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1352–1358. doi: 10.11999/JEIT180228
    WU M, YIN Bei, WANG Guohui, et al. Large-scale MIMO detection for 3GPP LTE: Algorithms and FPGA implementations[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 916–929. doi: 10.1109/JSTSP.2014.2313021
    JIN Fangli, LIU Qiufeng, LIU Hao, et al. A low complexity signal detection scheme based on improved newton iteration for massive MIMO systems[J]. IEEE Communications Letters, 2019, 23(4): 748–751. doi: 10.1109/LCOMM.2019.2897798
    HU Yuting, WANG Zhongxu, GAO Xinyu, et al. Low-complexity signal detection using CG method for uplink large-scale MIMO systems[C]. 2014 IEEE International Conference on Communication Systems, Macau, China, 2014: 477–481. doi: 10.1109/ICCS.2014.7024849.
    PENG Guiqiang, LIU Leibo, ZHANG Peng, et al. Low-computing-load, high-parallelism detection method based on Chebyshev iteration for massive MIMO systems with VLSI architecture[J]. IEEE Transactions on Signal Processing, 2017, 65(14): 3775–3788. doi: 10.1109/TSP.2017.2698410
    DAI Linglong, GAO Xinyu, SU Xin, et al. Low-complexity soft-output signal detection based on gauss–Seidel method for uplink multiuser large-scale MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2015, 64(10): 4839–4845. doi: 10.1109/TVT.2014.2370106
    SHARIFFAR F, REFAHI SHEIKHANI A H, and NAJAFI H S. An efficient chebyshev semi-iterative method for the solution of large systems[J]. University Politehnica of Bucharest Scientific Bulletin-Series A, 2018, 80(4): 239–252.
    路新华, CARLES NAVARRO M, 王忠勇, 等. 大规模MIMO系统上行链路时间-空间结构信道估计算法[J]. 电子与信息学报, 2020, 42(2): 519–525. doi: 10.11999/JEIT180676

    LU Xinhua, CARLES NAVARRO M, WANG Zhongyong, et al. Channel estimation algorithm using temporal-spatial structure for up-link of massive MIMO systems[J]. Journal of Electronics &Information Technology, 2020, 42(2): 519–525. doi: 10.11999/JEIT180676
    GAO Xinyu, DAI Linglong, YUEN C, et al. Low-complexity MMSE signal detection based on Richardson method for large-scale MIMO systems[C]. The 2014 IEEE 80th Vehicular Technology Conference, Vancouver, Canada, 2014: 1–5. doi: 10.1109/VTCFall.2014.6966041.
    ZHOU Jiangyun, HU Jianhao, CHEN Jienan, et al. Biased MMSE soft-output detection based on conjugate gradient in massive MIMO[C]. The 2015 IEEE 11th International Conference on ASIC, Chengdu, China, 2015: 1–4. doi: 10.1109/ASICON.2015.7517204.
    BHAT G S and SAVAGE C D. Balanced gray codes[J]. The Electronic Journal of Combinatorics, 1996, 3(1): R25.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1033
  • HTML全文浏览量:  118
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-30
  • 修回日期:  2020-05-05
  • 网络出版日期:  2020-05-13
  • 刊出日期:  2021-02-23

目录

    /

    返回文章
    返回