高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于嗅探技术的字段操纵攻击研究

徐建峰 张方韬 徐震 王利明

徐建峰, 张方韬, 徐震, 王利明. 基于嗅探技术的字段操纵攻击研究[J]. 电子与信息学报, 2020, 42(10): 2342-2349. doi: 10.11999/JEIT191047
引用本文: 徐建峰, 张方韬, 徐震, 王利明. 基于嗅探技术的字段操纵攻击研究[J]. 电子与信息学报, 2020, 42(10): 2342-2349. doi: 10.11999/JEIT191047
Jianfeng XU, Fangtao ZHANG, Zhen XU, Liming WANG. Field Manipulation Attacks Based on Sniffing Techniques[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2342-2349. doi: 10.11999/JEIT191047
Citation: Jianfeng XU, Fangtao ZHANG, Zhen XU, Liming WANG. Field Manipulation Attacks Based on Sniffing Techniques[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2342-2349. doi: 10.11999/JEIT191047

基于嗅探技术的字段操纵攻击研究

doi: 10.11999/JEIT191047
基金项目: 北京市科技计划项目(Z181100002718003)
详细信息
    作者简介:

    徐建峰:男,1995年生,博士生,研究方向为软件定义网络与网络系统安全

    张方韬:男,1982年生,博士生,研究方向为软件定义网络与网络系统安全

    徐震:男,1976年生,正高级工程师,研究方向为网络系统安全与边缘计算

    王利明:男,1978年生,正高级工程师,研究方向为网络系统安全与大数据安全分析

    通讯作者:

    徐震 xuzhen@iie.ac.cn

  • 中图分类号: TN918; TP393

Field Manipulation Attacks Based on Sniffing Techniques

Funds: Beijing Municipal Science and Technology Project (Z181100002718003)
  • 摘要: 软件定义网络(SDN)为网络基础设施提供灵活性、可管理性以及可编程性的同时,引入了诸多新型的攻击向量。该文介绍了攻击者针对OpenFlow关键字段发起的恶意操纵攻击,并设计了3种基于数据包转发时延的嗅探技术以保证字段操纵攻击在真实SDN网络中的可实施性。实验结果表明,字段操纵攻击严重消耗了SDN网络资源,进而导致合法用户之间的通信性能明显降低。
  • 图  1  OpenFlow协议中的标准流规则

    图  2  Ryu控制器2层转发应用的嗅探结果

    图  3  匹配操纵攻击流程图

    图  4  两种类型的流量特征

    图  5  基于流量模型的嗅探技术

    图  6  实验拓扑

    图  7  匹配操纵攻击对控制器CPU的影响

    图  8  匹配操纵攻击对合法用户时延的影响

    图  9  超时操纵攻击对交换机流表资源的影响

    图  10  超时操纵攻击对合法用户通信时延的影响

    图  11  计时器操纵攻击对计时器操纵攻击的影响

    图  12  计时器操纵攻击对合法用户时延的影响

    表  1  基于二分法的嗅探技术

     初始化:探测包序列$\{ {p_1},{p_2},···,{p_n}\}$;最小超时初始设置为0;最大超时初始设置为$t$(保证$t$时间后规则被剔除);
     (1) 注入${p_1}$数据包;
     (2) 循环,对于探测包序列$\{ {p_1},{p_2},···,{p_n}\}$中的每一个数据包${p_i}$:
     (3)  设置等待时延为(最小超时+最大超时)/2;
     (4)  等待时延过后,注入${p_i}$数据包,并获得${p_i}$数据包的往返时延;
     (5)  如果往返时延较大,说明${p_i}$数据包再次触发了流规则安装过程,则:
     (6)   更新最大超时为(最小超时+最大超时)/2;
     (7)  否则,说明${p_i}$数据包没有触发了流规则安装过程,然后:
     (8)   更新最小超时为(最小超时+最大超时)/2;
     (9) 当全部探测包发送完毕,返回得到的最小超时和最大超时;
    下载: 导出CSV
  • MCKEOWN N, ANDERSON T, BALAKRISHNAN H, et al. OpenFlow: Enabling innovation in campus networks[J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 69–74. doi: 10.1145/1355734.1355746
    ZENG Yue, GUO Songtao, and LIU Guiyan. Comprehensive link sharing avoidance and switch aggregation for software-defined data center networks[J]. Future Generation Computer Systems, 2019, 91: 25–36. doi: 10.1016/j.future.2018.08.034
    WANG Haopei, SRIVASTAVA A, XU Lei, et al. Bring your own controller: Enabling tenant-defined SDN apps in IaaS clouds[C]. IEEE Conference on Computer Communications, Atlanta, USA, 2017: 1–9. doi: 10.1109/INFOCOM.2017.8057137.
    SAHAY R, MENG Weizhi, ESTAY D A S, et al. CyberShip-IoT: A dynamic and adaptive SDN-based security policy enforcement framework for ships[J]. Future Generation Computer Systems, 2019, 100: 736–750. doi: 10.1016/j.future.2019.05.049
    ZHENG Jing, LI Qi, GU Guofei, et al. Realtime DDoS defense using COTS SDN switches via adaptive correlation analysis[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(7): 1838–1853. doi: 10.1109/TIFS.2018.2805600
    姚琳元, 董平, 张宏科. 基于对象特征的软件定义网络分布式拒绝服务攻击检测方法[J]. 电子与信息学报, 2017, 39(2): 381–388. doi: 10.11999/JEIT160370

    YAO Linyuan, DONG Ping, and ZHANG Hongke. Distributed denial of service attack detection based on object character in software defined network[J]. Journal of Electronics &Information Technology, 2017, 39(2): 381–388. doi: 10.11999/JEIT160370
    武泽慧, 魏强, 任开磊, 等. 基于OpenFlow交换机洗牌的DDoS攻击动态防御方法[J]. 电子与信息学报, 2017, 39(2): 397–404. doi: 10.11999/JEIT160449

    WU Zehui, WEI Qiang, REN Kailei, et al. Dynamic defense for DDoS attack using OpenFlow-based switch shuffling approach[J]. Journal of Electronics &Information Technology, 2017, 39(2): 397–404. doi: 10.11999/JEIT160449
    DENG Shuhua, GAO Xing, LU Zebin, et al. DoS vulnerabilities and mitigation strategies in software-defined networks[J]. Journal of Network and Computer Applications, 2019, 125: 209–219. doi: 10.1016/j.jnca.2018.10.011
    SKOWYRA R, XU Lei, GU Guofei, et al. Effective topology tampering attacks and defenses in software-defined networks[C]. The 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, Luxembourg City, 2018: 374–385. doi: 10.1109/dsn.2018.00047.
    LI Qi, ZOU Xiaoyue, HUANG Qun, et al. Dynamic packet forwarding verification in SDN[J]. IEEE Transactions on Dependable and Secure Computing, 2019, 16(6): 915–929. doi: 10.1109/TDSC.2018.2810880
    CAO Jiahao, LI Qi, XIE Renjie, et al. The crosspath attack: Disrupting the SDN control channel via shared links[C]. The 28th USENIX Conference on Security Symposium, Berkeley, USA, 2019: 19–36.
    SHIN S and GU Guofei. Attacking software-defined networks: A first feasibility study[C]. The 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, Hong Kong, China, 2013: 165–166. doi: 10.1145/2491185.2491220.
    CAO Jiahao, XU Mingwei, LI Qi, et al. Disrupting sdn via the data plane: A low-rate flow table overflow attack[C]. The 13th International Conference on Security and Privacy in Communication Networks, Niagara Falls, Canada, 2017: 356–376. doi: 10.1007/978-3-319-78813-5_18.
    JAIN S, KUMAR A, MANDAL S, et al. B4: Experience with a globally-deployed software defined wan[J]. ACM SIGCOMM Computer Communication Review, 2013, 43(4): 3–14. doi: 10.1145/2486001.2486019
    Open Networking Foundation. OpenFlow switch specification 1.5. 1[EB/OL]. https://www.opennetworking.org/software-defined-standards/specifications/, 2019.
    ZHANG Mengtao, LI Guanyu, XU Lei, et al. Control plane reflection attacks in SDNs: New attacks and countermeasures[C]. The 21st International Symposium on Research in Attacks, Intrusions, and Defenses, Heraklion, Greece, 2018: 161–183. doi: 10.1007/978-3-030-00470-5_8.
    XU Hongli, YU Zhuolong, QIAN Chen, et al. Minimizing flow statistics collection cost of SDN using wildcard requests[C]. IEEE Conference on Computer Communications, Atlanta, USA, 2017: 1–9. doi: 10.1109/INFOCOM.2017.8056992.
    ZHU Huikang, FAN Hongbo, LUO Xuan, et al. Intelligent timeout master: Dynamic timeout for SDN-based data centers[C]. The 13th International Symposium on Integrated Network Management, Ottawa, Canada, 2015: 734–737. doi: 10.1109/INM.2015.7140363.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1556
  • HTML全文浏览量:  508
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-30
  • 修回日期:  2020-07-23
  • 网络出版日期:  2020-07-28
  • 刊出日期:  2020-10-13

目录

    /

    返回文章
    返回