高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于理想格的通用可组合两方口令认证密钥交换协议

舒琴 王圣宝 路凡义 韩立东 谭肖

舒琴, 王圣宝, 路凡义, 韩立东, 谭肖. 基于理想格的通用可组合两方口令认证密钥交换协议[J]. 电子与信息学报, 2021, 43(6): 1756-1763. doi: 10.11999/JEIT191029
引用本文: 舒琴, 王圣宝, 路凡义, 韩立东, 谭肖. 基于理想格的通用可组合两方口令认证密钥交换协议[J]. 电子与信息学报, 2021, 43(6): 1756-1763. doi: 10.11999/JEIT191029
Qin SHU, Shengbao WANG, Fanyi LU, Lidong HAN, Xiao TAN. Universally Composable Two-Party Password-Based Authenticated Key Exchange from Ideal Lattices[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1756-1763. doi: 10.11999/JEIT191029
Citation: Qin SHU, Shengbao WANG, Fanyi LU, Lidong HAN, Xiao TAN. Universally Composable Two-Party Password-Based Authenticated Key Exchange from Ideal Lattices[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1756-1763. doi: 10.11999/JEIT191029

基于理想格的通用可组合两方口令认证密钥交换协议

doi: 10.11999/JEIT191029
基金项目: 国家重点研发计划项目(2017YFB0802000),国家自然科学基金青年项目(61702152, 61702153),浙江省教育厅科研项目(Y202044830)
详细信息
    作者简介:

    舒琴:女,1995年生,硕士,研究方向为基于格的认证协议

    王圣宝:男,1978年生,副教授,研究方向为认证及密钥建立与区块链安全

    韩立东:男,1982年生,讲师,研究方向为可搜索加密

    谭肖:男,1985年生,讲师,研究方向为公钥密码学

    通讯作者:

    王圣宝 shengbaowang@hznu.edu.cn

  • 中图分类号: TN918; TP309.7

Universally Composable Two-Party Password-Based Authenticated Key Exchange from Ideal Lattices

Funds: The National Key R&D Program of China (2017YFB0802000), The Youth Program of National Natural Science Foundation of China (61702152, 61702153), The Scientific Research Fund of Zhejiang Provincial Education Department (Y202044830)
  • 摘要: 大部分现有基于格的两方口令认证密钥交换协议(2PAKE)都是在基于不可区分的公共参考串模型或Bellare-Pointcheval-Rogaway(BBR)模型下被证明安全的。该文提出一个基于环上带误差学习问题的两方口令认证密钥交换协议,并在通用可组合框架下证明其安全性。与同类协议相比,新协议具有更高的安全性和更高的效率。
  • 图  1  RLWE-CAPAKE的相互认证及密钥交换过程

    表  1  UC框架不可区分性证明概览

    游戏模型游戏模拟器挑战者
    U1U2U3U4哈希与加解密
    ${\rm{G}} 0$现实真实真实真实真实真实协议${\cal{A}}$
    ${\rm{G}} 1$混合真实真实真实真实模拟${\cal{H}}$${\cal{A}}$
    ${\rm{G}} 2$混合真实真实真实真实模拟${\cal{H}}$${\cal{A}}$
    ${\rm{G}} 3$混合真实真实真实模拟模拟${\cal{H}}$${\cal{A}}$
    ${\rm{G}} 4$混合模拟真实模拟真实模拟${\cal{H}}$${\cal{A}}$
    ${\rm{G}} 5$混合真实真实真实模拟模拟${\cal{H}}$${\cal{A}}$
    ${\rm{G}} 6$混合真实模拟真实模拟模拟${\cal{H}}$${\cal{A}}$
    ${\rm{G}} 7$理想模拟模拟模拟模拟模拟${\cal{S}}$${\cal{A}}$
    下载: 导出CSV

    表  2  理想格上口令基2PAKE协议的性能比较

    协议通信开销环运算次数安全模型难题假设误差调和
    RLWE-PAK$2n\;{\log _2}\;q + n$4BPR模型RLWEDing式REC
    RLWE-SRP$2n\;{\log _2}\;q + n$5UC模型RLWEDing式REC
    本文协议$2n\;{\log _2}\;q + n$4UC模型RLWEPeikert式REC
    下载: 导出CSV
  • [1] SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Review, 1999, 41(2): 303–332. doi: 10.1137/S0036144598347011
    [2] HALLGREN S. Fast quantum algorithms for computing the unit group and class group of a number field[C]. The Thirty-Seventh Annual ACM Symposium on Theory of Computing, Baltimore, USA, 2005: 468–474. doi: 10.1145/1060590.1060660.
    [3] KATZ J and VAIKUNTANATHAN V. Smooth projective hashing and password-based authenticated key exchange from lattices[C]. The 15th International Conference on the Theory and Application of Cryptology and Information Security: Advances in Cryptology, Tokyo, Japan, 2009: 636–652. doi: 10.1007/978-3-642-10366-7_37.
    [4] JIANG Shaoquan and GONG Guang. Password based key exchange with mutual authentication[C]. The 11th International Workshop on Selected Areas in Cryptography, Waterloo, Canada, 2004: 267–279. doi: 10.1007/978-3-540-30564-4_19.
    [5] DING Yi and FAN Lei. Efficient password-based authenticated key exchange from lattices[C]. The 2011 Seventh International Conference on Computational Intelligence and Security, Sanya, China, 2011: 934–938. doi: 10.1109/CIS.2011.210.
    [6] ZHANG Jiang and YU Yu. Two-round PAKE from approximate SPH and instantiations from lattices[C]. The 23rd International Conference on the Theory and Application of Cryptology and Information Security, Hong Kong, China, 2017: 37–67. doi: 10.1007/978-3-319-70700-6_2.
    [7] DING Jintai, ALSAYIGH S, LANCRENON J, et al. Provably secure password authenticated key exchange based on RLWE for the post-quantum world[C]. The Cryptographers’ Track at the RSA Conference, San Francisco, USA, 2017: 183–204. doi: 10.1007/978-3-319-52153-4_11.
    [8] LI Zengpeng and WANG Ding. Two-round PAKE protocol over lattices without NIZK[C]. The 14th International Conference on Information Security and Cryptology, Fuzhou, China, 2019: 138–159. doi: 10.1007/978-3-030-14234-6_8.
    [9] KARBASI A H, ATANI R E, and ATANI S E. A new ring-based SPHF and PAKE protocol on ideal lattices[J]. ISeCure, 2019, 11(1): 1–11. doi: 10.22042/ISECURE.2018.109810.398
    [10] BELLARE M, POINTCHEVAL D, and ROGAWAY P. Authenticated key exchange secure against dictionary attacks[C]. International Conference on the Theory and Application of Cryptographic Techniques, Bruges, Belgium, 2000: 139–155. doi: 10.1007/3-540-45539-6_11.
    [11] CANETTI R, HALEVI S, KATZ J, et al. Universally composable password-based key exchange[C]. The 24th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, 2005: 404–421. doi: 10.1007/11426639_24.
    [12] GAO Xinwei, DING Jintai, LIU Jiqiang, et al. Post-quantum secure remote password protocol from RLWE problem[C]. The 13th International Conference on Information Security and Cryptology, Xi'an, China, 2018: 99–116. doi: 10.1007/978-3-319-75160-3_8.
    [13] WU T. The secure remote password protocol[C]. The 1998 Internet Society Network and Distributed System Security Symposium, San Diego, USA, 1998: 97–111.
    [14] DING Jintai, XIE Xiang, and LIN Xiaodong. A simple provably secure key exchange scheme based on the learning with errors problem[R]. Cryptology ePrint Archive: Report 2012/688, 2012.
    [15] PEIKERT C. Lattice cryptography for the internet[C]. The 6th International Workshop on Post-Quantum Cryptography, Waterloo, Canada, 2014: 197–219. doi: 10.1007/978-3-319-11659-4_12.
    [16] ABDALLA M, CATALANO D, CHEVALIER C, et al. Efficient two-party password-based key exchange protocols in the UC framework[C]. The Cryptographers’ Track at the RSA Conference, San Francisco, USA, 2008: 335–351. doi: 10.1007/978-3-540-79263-5_22.
    [17] LYUBASHEVSKY V, PEIKERT C, and REGEV O. On ideal lattices and learning with errors over rings[C]. The 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, French, 2010: 1–23. doi: 10.1007/978-3-642-13190-5_1.
    [18] 张洋, 刘仁章, 林东岱. 理想格上格基的快速三角化算法研究[J]. 电子与信息学报, 2020, 42(1): 98–104. doi: 10.11999/JEIT190725

    ZHANG Yang, LIU Renzhang, and LIN Dongdai. Fast triangularization of ideal latttice basis[J]. Journal of Electronics &Information Technology, 2020, 42(1): 98–104. doi: 10.11999/JEIT190725
    [19] CANETTI R and RABIN T. Universal composition with joint state[C]. The 23rd Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2003: 265–281. doi: 10.1007/978-3-540-45146-4_16.
    [20] HOFHEINZ D and MÜLLER-QUADE J. Universally composable commitments using random oracles[C]. First Theory of Cryptography Conference on Theory of Cryptography, Cambridge, USA, 2004: 58–76. doi: 10.1007/978-3-540-24638-1_4.
    [21] LISKOV M, RIVEST R L, and WAGNER D. Tweakable block ciphers[C]. The 22nd Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2002: 31–46. doi: 10.1007/3-540-45708-9_3.
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  1551
  • HTML全文浏览量:  460
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-24
  • 修回日期:  2021-03-09
  • 网络出版日期:  2021-03-12
  • 刊出日期:  2021-06-18

目录

    /

    返回文章
    返回