高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于脑功能网络和样本熵的脑电信号特征提取

罗志增 鲁先举 周莹

罗志增, 鲁先举, 周莹. 基于脑功能网络和样本熵的脑电信号特征提取[J]. 电子与信息学报, 2021, 43(2): 412-418. doi: 10.11999/JEIT191015
引用本文: 罗志增, 鲁先举, 周莹. 基于脑功能网络和样本熵的脑电信号特征提取[J]. 电子与信息学报, 2021, 43(2): 412-418. doi: 10.11999/JEIT191015
Zhizeng LUO, Xianju LU, Ying ZHOU. EEG Feature Extraction Based on Brain Function Network and Sample Entropy[J]. Journal of Electronics & Information Technology, 2021, 43(2): 412-418. doi: 10.11999/JEIT191015
Citation: Zhizeng LUO, Xianju LU, Ying ZHOU. EEG Feature Extraction Based on Brain Function Network and Sample Entropy[J]. Journal of Electronics & Information Technology, 2021, 43(2): 412-418. doi: 10.11999/JEIT191015

基于脑功能网络和样本熵的脑电信号特征提取

doi: 10.11999/JEIT191015
基金项目: 国家自然科学基金(61671197)
详细信息
    作者简介:

    罗志增:男,1965年生,博士,教授,研究方向为生物信息处理与分析、机器人技术、传感器及多信息融合等

    鲁先举:男,1995年生,硕士生,研究方向为模式识别、脑-机接口及相关应用等

    周莹:男,1993年生,硕士生,研究方向为脑-机接口

    通讯作者:

    罗志增 luo@hdu.edu.cn

  • 中图分类号: TN911.7; TP391

EEG Feature Extraction Based on Brain Function Network and Sample Entropy

Funds: The National Natural Science Foundation of China (61671197)
  • 摘要:

    针对脑-机接口(BCI)研究中采用单一特征对运动想象脑电信号(EEG)识别率不高的问题,该文提出一种结合脑功能网络和样本熵的特征提取方法。根据事件相关同步/去同步(ERS/ERD)现象以及皮层与肢体运动想象间的对侧映射机制,选取小波包变换消噪重构后的

    \begin{document}$ \mu$\end{document}

    节律脑电信号,用左侧27个通道、右侧27个通道分别对左半球脑区和右半球脑区构建脑功能网络,计算网络的平均节点度和平均聚集系数作为运动想象的脑功能网络特征,并结合C3, C4通道

    节律的样本熵构筑分布性和指向性相结合的特征向量。选用支持向量机(SVM)对左右手运动想象脑电信号进行分类,结果表明基于脑功能网络和样本熵的特征提取方法能够实现更优的分类效果,分类准确率最高可达90.27%。

  • 图  1  受试者B原始EEG和小波包变换提取的μ节律

    图  2  电极位置分布图

    图  3  阈值T按照0.05步长递增下$\sigma $特性分布图

    图  4  脑功能网络拓扑结构

    图  5  左、右脑功能网络平均节点度、平均聚集系数分布

    图  6  C3和C4通道样本熵值分布

    表  1  不同特征向量平均正确识别率与方差(%)

    特征向量受试B受试C受试D受试E受试G平均正确识别率
    脑功能网络75.37±1.0279.58±1.5480.71±1.9074.42±1.3982.32±0.5878.48±7.89
    样本熵70.28±1.9376.70±2.2574.59±3.9669.43±1.8777.36±1.5873.67±11.20
    脑功能网络+样本熵85.28±0.8589.59±0.9487.11±1.6983.88±0.7590.27±0.3487.23±5.94
    下载: 导出CSV

    表  2  各受试不同特征t检验的p

    受试(脑网络+样本熵,脑网络)(脑网络+样本熵,样本熵)
    B<0.01<0.01
    C<0.01<0.01
    D<0.01<0.01
    E<0.01<0.01
    G<0.01<0.01
    下载: 导出CSV

    表  3  不同特征提取方法平均正确识别率对比

    特征提取方法平均正确
    识别率(%)
    实验数据来源
    本文87.23BCI Competition Ⅳ Data Set 1
    共空间模式算法[18]70.90BCI Competition Ⅳ Data Set 1
    滤波器组共空间模式[18]80.88BCI Competition Ⅳ Data Set 1
    功率谱密度[19]73.13BCI Competition Ⅳ Data Set 1
    希尔伯特-黄变换[20]84.70BCI Competition Ⅳ Data Set 1
    下载: 导出CSV
  • LUO Zhizeng, LU Xianju, and XI Xugang. EEG feature extraction based on a bilevel network: Minimum spanning tree and regional network[J]. Electronics, 2020, 9(2): 203. doi: 10.3390/electronics9020203
    谭平, 刘利枚, 郭璠, 等. Chernoff加权分类器框架在运动想象脑-机接口中的应用[J]. 电子与信息学报, 2020, 42(2): 488–494. doi: 10.11999/JEIT181132

    TAN Ping, LIU Limei, GUO Fan, et al. Applying Chernoff weighted classification frame method to motorimagery brain computer interface[J]. Journal of Electronics &Information Technology, 2020, 42(2): 488–494. doi: 10.11999/JEIT181132
    唐贤伦, 李伟, 马伟昌, 等. 基于条件经验模式分解和串并行CNN的脑电信号识别[J]. 电子与信息学报, 2020, 42(4): 1041–1048. doi: 10.11999/JEIT190124

    TANG Xianlun, LI Wei, MA Weichang, et al. Conditional empirical mode decomposition and serial parallel CNN for electroencephalogram signal recognition[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1041–1048. doi: 10.11999/JEIT190124
    MOURA A, LOPEZ S, OBEID I, et al. A comparison of feature extraction methods for EEG signals[C]. 2015 IEEE Signal Processing in Medicine and Biology Symposium, Philadelphia, USA, 2015: 1–2. doi: 10.1109/SPMB.2015.7405430.
    BANITALEBI A, SETAREHDAN S K, HOSSEIN-ZADEH G A. A technique based on chaos for brain computer interfacing[C]. The 2009 14th International CSI Computer Conference, Tehran, Iran, 2009: 464–469. doi: 10.1109/CSICC.2009.5349623.
    ABÁSOLO D, HORNERO R, GÓMEZ G, et al. Analysis of EEG background activity in Alzheimer’s disease patients with Lempel–Ziv complexity and central tendency measure[J]. Medical Engineering & Physics, 2006, 28(4): 315–322.
    周静, 吴效明. 基于样本熵的睡眠呼吸暂停综合征脑电研究[J]. 中国医学物理学杂志, 2016, 33(7): 722–725. doi: 10.3969/j.issn.1005-202X.2016.07.017

    ZHOU Jing and WU Xiaoming. Electroencephalogram of sleep apnea syndrome based on sample entropy[J]. Chinese Journal of Medical Physics, 2016, 33(7): 722–725. doi: 10.3969/j.issn.1005-202X.2016.07.017
    BIRBAUMER N. Breaking the silence: Brain-Computer Interfaces (BCI) for communication and motor control[J]. Psychophysiology, 2006, 43(6): 517–532. doi: 10.1111/j.1469-8986.2006.00456.x
    SPORNS O. Structure and function of complex brain networks[J]. Dialogues in Clinical Neuroscience, 2013, 15(3): 247–262.
    CHAOVALITWONGSE W A, POTTENGER R S, WANG Shouyi, et al. Pattern- and network-based classification techniques for multichannel medical data signals to improve brain diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics- Part A: Systems and Humans, 2011, 41(5): 977–988. doi: 10.1109/tsmca.2011.2106118
    STANLEY M L, SIMPSON S L, DALE D, et al. Changes in brain network efficiency and working memory performance in aging[J]. PLoS One, 2015, 10(4): e0123950. doi: 10.1371/journal.pone.0123950
    杨硕, 艾娜, 王磊, 等. 脑疲劳状态的脑功能网络特征分类研究[J]. 生物医学工程学杂志, 2018, 35(2): 171–175.

    YANG Shuo, AI Na, WANG Lei, et al. Research on classification of brain functional network features during mental fatigue[J]. Journal of Biomedical Engineering, 2018, 35(2): 171–175.
    周鹏, 葛家怡, 曹红宝, 等. 基于样本熵的运动想象分类研究[J]. 信息与控制, 2008, 37(2): 191–196. doi: 10.3969/j.issn.1002-0411.2008.02.013

    ZHOU Peng, GE Jiayi, CAO Hongbao, et al. Classification of motor imagery based on sample entropy[J]. Information and Control, 2008, 37(2): 191–196. doi: 10.3969/j.issn.1002-0411.2008.02.013
    PINCUS S. Approximate entropy (ApEn) as a complexity measure[J]. Chaos, 1995, 5(1): 110–117.
    BLANKERTZ B, DORNHEGE G, KRAULEDAT M, et al. The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects[J]. NeuroImage, 2007, 37(2): 539–550.
    JOCHUMSEN M, ROVSING C, ROVSING H, et al. Classification of hand grasp kinetics and types using movement-related cortical potentials and EEG rhythms[J]. Computational Intelligence and Neuroscience, 2017, 2017: 7470864. doi: 10.1155/2017/7470864
    NAGAMORI S and TANAKA H. Analysis method for ERD in mu-rhythm detection in motor imagery brain-computer interface[C]. 2016 IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary, 2017: 867–870. doi: 10.1109/SMC.2016.7844349.
    ZHANG Haihong, CHIN Z Y, ANG K K, et al. Optimum spatio-spectral filtering network for brain-computer interface[J]. IEEE Transactions on Neural Networks, 2011, 22(1): 52–63. doi: 10.1109/TNN.2010.2084099
    李静, 王金甲, 李慧. 融合脑电特征的弹性网特征选择和分类[J]. 生物医学工程学杂志, 2016, 33(3): 413–419. doi: 10.7507/1001-5515.20160070

    LI Jing, WANG Jinjia, and LI Hui. Selection and classification of elastic net feature with fused electroencephalogram features[J]. Journal of Biomedical Engineering, 2016, 33(3): 413–419. doi: 10.7507/1001-5515.20160070
    袁玲, 杨帮华, 马世伟. 基于HHT和SVM的运动想象脑电识别[J]. 仪器仪表学报, 2010, 31(3): 649–654. doi: 10.19650/j.cnki.cjsi.2010.03.029

    YUAN Ling, YANG Banghua, and MA Shiwei. Discrimination of movement imagery EEG based on HHT and SVM[J]. Chinese Journal of Scientific Instrument, 2010, 31(3): 649–654. doi: 10.19650/j.cnki.cjsi.2010.03.029
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  2072
  • HTML全文浏览量:  1298
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-19
  • 修回日期:  2020-12-07
  • 网络出版日期:  2020-12-16
  • 刊出日期:  2021-02-23

目录

    /

    返回文章
    返回