高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

编码协作系统准循环重复累积码的联合设计与性能分析

张顺外 付勇峰

张顺外, 付勇峰. 编码协作系统准循环重复累积码的联合设计与性能分析[J]. 电子与信息学报, 2021, 43(5): 1298-1305. doi: 10.11999/JEIT190990
引用本文: 张顺外, 付勇峰. 编码协作系统准循环重复累积码的联合设计与性能分析[J]. 电子与信息学报, 2021, 43(5): 1298-1305. doi: 10.11999/JEIT190990
Shunwai ZHANG, Yongfeng FU. Joint Design of QC-RA Codes and Performance Analysis of Coded Cooperation[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1298-1305. doi: 10.11999/JEIT190990
Citation: Shunwai ZHANG, Yongfeng FU. Joint Design of QC-RA Codes and Performance Analysis of Coded Cooperation[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1298-1305. doi: 10.11999/JEIT190990

编码协作系统准循环重复累积码的联合设计与性能分析

doi: 10.11999/JEIT190990
基金项目: 国家自然科学基金(61501256),江苏省高等学校自然科学研究面上项目(20KJB510034),江苏省自然科学基金(BK20150857),南京邮电大学国自基金孵化项目(NY219073)
详细信息
    作者简介:

    张顺外:男,1987年生,博士,副教授,硕士生导师,研究方向为编码协作网络

    付勇峰:男,1996年生,硕士生,研究方向为编码协作通信技术

    通讯作者:

    张顺外 swzhang@njupt.edu.cn

  • 中图分类号: TN911.22

Joint Design of QC-RA Codes and Performance Analysis of Coded Cooperation

Funds: The National Natural Science Foundation of China (61501256), The Natural Science Foundation of Jiangsu Higher Education Institutions (20KJB510034), The Natural Science Foundation of Jiangsu Province (BK20150857), The NUPTSF (NY219073)
  • 摘要: 重复累积(RA)码是一种特殊结构的低密度奇偶校验(LDPC)码,不仅具有LDPC码的优点,还能实现差分编码。针对LDPC编码协作系统编码复杂度高、时延长的问题,该文引入准循环RA(QC-RA)码,推导出信源节点和中继节点采用的QC-RA码对应的联合校验矩阵,基于公差构造方法设计该联合校验矩阵,并证明该方法设计的联合校验矩阵不存在围长为girth-4, girth-6的短环。理论分析和仿真结果表明,同等条件下该系统比相应点对点系统具有更优异的误码率性能。仿真结果同时表明,与采用一般构造QC-RA码或基于Z型构造QC-RA码相比,采用基于公差构造的联合设计QC-RA码的多信源多中继协作均可获得更高的编码增益。
  • 图  1  多信源多中继QC-RA编码协作系统模型

    图  2  双信源双中继编码协作与对应点对点系统的BER性能比较

    图  3  不同信源节点数和中继节点数目下编码协作系统的BER性能比较

    图  4  不同构造方法在编码协作系统的BER性能比较

    图  5  不同调制方式和不同天线数目在编码协作系统中的BER性能比较

    图  6  girth-6环的3类情形

    表  1  双信源双中继编码协作及对应点对点系统采用的QC-RA码

    信源节点采用的QC-RA码 中继节点采用的QC-RA码
    双信源双中继
    编码协作系统
    $\begin{array}{l} {{{H}}_{{S_1}}} = \left[ {\begin{array}{*{20}{c}} {{{A}}_{(1700 \times 850)}^{(1)}}&{{{{D}}_{(1700 \times 1700)}}} \end{array}} \right] \\ {{{H}}_{{S_2}}} = \left[ {\begin{array}{*{20}{c}} {{{A}}_{(1700 \times 850)}^{(2)}}&{{{{D}}_{(1700 \times 1700)}}} \end{array}} \right] \end{array} $
    Rate=1/3
    $\begin{array}{l} {{{H}}_{{R_1}}} = \left[ {\begin{array}{*{20}{c}} {{{B}}_{1(1700 \times 850)}^{(1)}}&{{{B}}_{2(1700 \times 850)}^{(1)}}&{{{{D}}_{(1700 \times 1700)}}} \end{array}} \right] \\ {{{H}}_{{R_2}}} = \left[ {\begin{array}{*{20}{c}} {{{B}}_{1(1700 \times 850)}^{(2)}}&{{{B}}_{2(1700 \times 850)}^{(2)}}&{{{{D}}_{(1700 \times 1700)}}} \end{array}} \right] \end{array} $
    Rate=3/4
    点对点系统${{{H}}_S} = \left[ {\begin{array}{*{20}{c}} {{{{H}}_{(6800 \times 1700)}}}&{{{{D}}_{(6800 \times 6800)}}} \end{array}} \right]$ Rate=1/5\
    下载: 导出CSV

    表  2  不同信源节点、中继节点数目情况下编码协作系统采用的RA码

    信源节点采用的QC-RA码中继节点采用的QC-RA码
    双信源单中继系统$\begin{array}{l} {{{H}}_{{S_1}}} = \left[ {\begin{array}{*{20}{c}} {{{A}}_{(1700 \times 1700)}^{(1)}}&{{{{D}}_{(1700 \times 1700)}}} \end{array}} \right] \\ {{{H}}_{{S_2}}} = \left[ {\begin{array}{*{20}{c}} {{{A}}_{(1700 \times 1700)}^{(2)}}&{{{{D}}_{(1700 \times 1700)}}} \end{array}} \right] \end{array} $
    Rate=1/2
    ${{{H}}_R} = \left[ {\begin{array}{*{20}{c}} {{{{B}}_{1(1700 \times 1700)}}}&{{{{B}}_{2(1700 \times 1700)}}}&{{{{D}}_{(1700 \times 1700)}}} \end{array}} \right]$
    Rate=2/3
    单信源双中继系统${{{H}}_S} = \left[ {\begin{array}{*{20}{c}} {{{{A}}_{(1700 \times 1700)}}}&{{{{D}}_{(1700 \times 1700)}}} \end{array}} \right]$
    Rate=1/2
    $\begin{array}{l} {{{H}}_{{R_1}}} = \left[ {\begin{array}{*{20}{c}} {{{B}}_{(1700 \times 1700)}^{(1)}}&{{{{D}}_{(1700 \times 1700)}}} \end{array}} \right] \\ {{{H}}_{{R_2}}} = \left[ {\begin{array}{*{20}{c}} {{{B}}_{(1700 \times 1700)}^{(2)}}&{{{{D}}_{(1700 \times 1700)}}} \end{array}} \right] \end{array} $
    Rate=1/2
    单信源单中继系统${{{H}}_S} = \left[ {\begin{array}{*{20}{c}} {{{{A}}_{(1700 \times 1700)}}}&{{{{D}}_{(1700 \times 1700)}}} \end{array}} \right]$
    Rate=1/2
    ${{{H}}_R} = \left[ {\begin{array}{*{20}{c}} {{{{B}}_{(1700 \times 1700)}}}&{{{{D}}_{(1700 \times 1700)}}} \end{array}} \right]$
    Rate=1/2
    下载: 导出CSV
  • [1] GALLAGER R G. Low-Density Parity-Check Codes[M]. Cambridge: The MIT Press, 1963.
    [2] CHEN Weigang, HAN Changcai, and YANG Jinsheng. Low-complexity encoder for LDPC codes in space applications[J]. Electronics Letters, 2019, 55(23): 1241–1243. doi: 10.1049/el.2019.2417
    [3] VATTA F, SORANZO A, COMISSO M, et al. Performance study of a class of irregular LDPC codes through low complexity bounds on their belief-propagation decoding thresholds[C]. 2019 AEIT International Annual Conference (AEIT), Florence, Italy, 2019: 1–6. doi: 10.23919/AEIT.2019.8893306.
    [4] TASDIGHI A, BANIHASHEMI A H, and SADEGHI M R. Symmetrical constructions for regular girth-8 QC-LDPC codes[J]. IEEE Transactions on Communications, 2017, 65(1): 14–22. doi: 10.1109/TCOMM.2016.2617335
    [5] LI Jialiang, CHEN Wen, JIANG Xueqin, et al. Construction of multiple-rate quasi-cyclic LDPC codes with girth eight[C]. 2016 8th International Conference on Wireless Communications & Signal Processing, Yangzhou, China, 2016: 1–5. doi: 10.1109/WCSP.2016.7752486.
    [6] 张轶, 达新宇, 苏一栋. 利用等差数列构造大围长准循环低密度奇偶校验码[J]. 电子与信息学报, 2015, 37(2): 394–398. doi: 10.11999/JEIT140538

    ZHANG Yi, DA Xinyu, and SU Yidong. Construction of quasi-cyclic low-density parity-check codes with a large girth based on arithmetic progression[J]. Journal of Electronics &Information Technology, 2015, 37(2): 394–398. doi: 10.11999/JEIT140538
    [7] ZHANG Yi and DA Xinyu. Construction of girth-eight QC-LDPC codes from arithmetic progression sequence with large column weight[J]. Electronics Letters, 2015, 51(16): 1257–1259. doi: 10.1049/el.2015.0389
    [8] ZHANG Guohua, SUN Rong, and WANG Xinmei. Construction of girth-eight QC-LDPC codes from greatest common divisor[J]. IEEE Communications Letters, 2013, 17(2): 369–372. doi: 10.1109/LCOMM.2012.122012.122292
    [9] SUN Rong, LIU Jingwei, ZHANG Pingli, et al. On the rateless character of irregular RA codes[C]. 2011 IEEE Workshops of International Conference on Advanced Information Networking and Applications, Singapore, 2011: 297–301. doi: 10.1109/WAINA.2011.49.
    [10] LANEMAN J N, WORNELL G W, and TSE D N C. An efficient protocol for realizing cooperative diversity in wireless networks[C]. 2001 IEEE International Symposium on Information Theory, Washington, USA, 2001: 294–295. doi: 10.1109/ISIT.2001.936157.
    [11] VAN NGUYEN B, JUNG H, and KIM K. Physical layer security schemes for full-duplex cooperative systems: State of the art and beyond[J]. IEEE Communications Magazine, 2018, 56(11): 131–137. doi: 10.1109/MCOM.2017.1700588
    [12] WANG Jieling, YU Quan, LI Zan, et al. Distributed space time block transmission and QRD based diversity detector in asynchronous cooperative communications systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5111–5125. doi: 10.1109/TVT.2018.2812901
    [13] MOUALEU J M, HAMOUDA W, XU Hongjun, et al. Multi-relay turbo-coded cooperative diversity networks over Nakagami-m fading channels[J]. IEEE Transactions on Vehicular Technology, 2013, 62(9): 4458–4470. doi: 10.1109/TVT.2013.2265329
    [14] EJAZ S and YANG Fengfan. Jointly optimized Reed-Muller codes for multilevel multirelay coded-cooperative VANETS[J]. IEEE Transactions on Vehicular Technology, 2017, 66(5): 4017–4028. doi: 10.1109/TVT.2016.2604320
    [15] SHIRVANIMOGHADDAM M, LI Yonghui, TIAN Shuang, et al. Distributed raptor coding for erasure channels: Partially and fully coded cooperation[J]. IEEE Transactions on Communications, 2013, 61(9): 3576–3589. doi: 10.1109/TCOMM.2013.072913.120724
    [16] JIN Ming, WANG Junming, ZHANG Yan, et al. The research and design of single relay coded cooperative system based on Polar codes[C]. 2017 13th IEEE International Conference on Electronic Measurement & Instruments, Yangzhou, China, 2017: 254–258. doi: 10.1109/ICEMI.2017.8265949.
    [17] WANG Hui and CHEN Qingchun. LDPC based network coded cooperation design for multi-way relay networks[J]. IEEE Access, 2019, 7: 62300–62311. doi: 10.1109/ACCESS.2019.2915293
    [18] 张顺外. LDPC编码协作系统性能与码的设计研究[D]. [博士学位论文], 南京航空航天大学, 2013.

    ZHANG Shunwai. LDPC-coded cooperation: Performance studies and codes design[D]. [Ph.D. dissertation], Nanjing University of Aeronautics and Astronautics, 2013.
    [19] 张顺外, 魏琪. 多信源多中继编码协作系统准循环LDPC码的联合设计与性能分析[J]. 电子与信息学报, 2019, 41(10): 2325–2333. doi: 10.11999/JEIT190069

    ZHANG Shunwai and WEI Qi. Joint design of quasi-cyclic low density parity check codes and performance analysis of multi-source multi-relay coded cooperative system[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2325–2333. doi: 10.11999/JEIT190069
    [20] ZHANG Shunwai, YANG Fengfan, TANG Lei, et al. Network-coding-based multisource RA-coded cooperative MIMO[C]. 2013 3rd International Conference on Computer Science and Network Technology, Dalian, China, 2013: 737–741. doi: 10.1109/ICCSNT.2013.6967215.
    [21] SADEGHI M R. Optimal search for girth-8 quasi cyclic and spatially coupled multiple-edge LDPC codes[J]. IEEE Communications Letters, 2019, 23(9): 1466–1469. doi: 10.1109/LCOMM.2019.2924892
    [22] ZHANG Shunwai, YANG Fengfan, and SONG Rongfang. Energy-harvesting-based RA-coded cooperative MIMO: Codes design and performance analysis[J]. Digital Signal Processing, 2017, 60: 56–62. doi: 10.1016/j.dsp.2016.08.013
    [23] RYAN W E and LIN Shu. Channel Codes Classical and Modern[M]. Cambridge, UK: Cambridge University Press, 2009.
    [24] 张丽丽, 赵泽茂, 包建荣. 基于Z形及等差数列结构的QC-LDPC码构造[J]. 通信学报, 2010, 31(8A): 117–121.

    ZHANG Lili, ZHAO Zemao, and BAO Jianrong. Construct of QC-LDPC codes based on Z-shape and arithmetic progression sequence[J]. Journal on Communications, 2010, 31(8A): 117–121.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  993
  • HTML全文浏览量:  337
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-11
  • 修回日期:  2020-11-18
  • 网络出版日期:  2020-12-07
  • 刊出日期:  2021-05-18

目录

    /

    返回文章
    返回