高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于正交调制的新型降噪差分混沌键控系统

张刚 刘金惠 张天骐

张刚, 刘金惠, 张天骐. 一种基于正交调制的新型降噪差分混沌键控系统[J]. 电子与信息学报, 2021, 43(2): 445-453. doi: 10.11999/JEIT190955
引用本文: 张刚, 刘金惠, 张天骐. 一种基于正交调制的新型降噪差分混沌键控系统[J]. 电子与信息学报, 2021, 43(2): 445-453. doi: 10.11999/JEIT190955
Gang ZHANG, Jinhui LIU, Tianqi ZHANG. A Novel Noise Reduction Differential Chaos Shift Keying  System Based on Quadrature Modulation[J]. Journal of Electronics & Information Technology, 2021, 43(2): 445-453. doi: 10.11999/JEIT190955
Citation: Gang ZHANG, Jinhui LIU, Tianqi ZHANG. A Novel Noise Reduction Differential Chaos Shift Keying  System Based on Quadrature Modulation[J]. Journal of Electronics & Information Technology, 2021, 43(2): 445-453. doi: 10.11999/JEIT190955

一种基于正交调制的新型降噪差分混沌键控系统

doi: 10.11999/JEIT190955
基金项目: 国家自然科学基金(61771085, 61371164),重庆市教育委员会科研项目(KJQN201900601)
详细信息
    作者简介:

    张刚:男,1976年生,博士,教授,研究方向为混沌同步、混沌保密通信

    刘金惠:女,1996年生,硕士生,研究方向为混沌保密通信

    张天骐:男,1971年生,博士后,教授,研究方向为扩频信号的盲处理、神经网络实现以及信号的同步处理

    通讯作者:

    刘金惠 1342343570@qq.com

  • 中图分类号: TN911.3

A Novel Noise Reduction Differential Chaos Shift Keying  System Based on Quadrature Modulation

Funds: The National Natural Science Foundation of China (61771085, 61371164), The Research Project of Chongqing Educational Commission (KJQN201900601)
  • 摘要:

    针对降噪差分混沌键控(NR-DCSK)传输速率低的缺点,该文提出一种基于正交调制的新型降噪差分混沌键控(QM-NRDCSK)系统。发生器产生两路混沌序列,每一路的参考信号是信息承载信号的

    \begin{document}$P$\end{document}

    次重复,不同用户信息通过不同时隙区分,两路信号使用正交调制在相同频带上传输。接收端通过滑动平均滤波器对每一路的参考信号进行

    次平均后与信息信号进行非相干解调。通过在AWGN和多径Rayleigh衰落信道下的仿真,验证了理论推导的正确性,并表明该系统在具有较高频谱利用率的同时,能有效提高传输速率且拥有较好的误码性能。

  • 图  1  QM-NRDCSK系统第$k$帧发送端框图

    图  2  QM-NRDCSK系统第$k$帧接收端框图

    图  3  多径Rayleigh信道模型

    图  4  系统帧结构

    图  5  不同$N$值下系统BER随${E_{\rm{b}}}/{N_0}$变化曲线

    图  6  不同${E_{\rm{b}}}/{N_0}$下系统BER随$N$值变化曲线

    图  7  不同$P$值下系统BER随${E_{\rm{b}}}/{N_0}$变化曲线

    图  8  不同$N$值下系统BER随$P$变化曲线

    图  9  不同信噪比下系统BER随$\beta $变化曲线

    图  10  不同路径下系统BER随${E_{\rm{b}}}/{N_0}$变化曲线

    图  11  不同信道增益下系统BER随${E_{\rm{b}}}/{N_0}$变化曲线

    图  12  Rayleigh信道下不同系统误码性能对比

  • KADDOUM G, TRAN H V, KONG Long, et al. Design of simultaneous wireless information and power transfer scheme for short reference DCSK communication systems[J]. IEEE Transactions on Communications, 2017, 65(1): 431–443. doi: 10.1109/TCOMM.2016.2619707
    张琳, 徐位凯, 王琳, 等. 码复用差分混沌键控性能分析与同步算法[J]. 重庆邮电大学学报: 自然科学版, 2016, 28(3): 330–336. doi: 10.3979/j.issn.1673-825X.2016.03.008

    ZHANG Lin, XU Weikai, WANG Lin, et al. Performance analysis and synchronization algorithm for CS-DCSK system[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2016, 28(3): 330–336. doi: 10.3979/j.issn.1673-825X.2016.03.008
    HU Wei, WANG Lin, and KADDOUM G. Design and performance analysis of a differentially spatial modulated chaos shift keying modulation system[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64(11): 1302–1306. doi: 10.1109/TCSII.2017.2697456
    KADDOUM G, SOUJERI E, ARCILA C, et al. I-DCSK: An improved noncoherent communication system architecture[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62(9): 901–905. doi: 10.1109/TCSII.2015.2435831
    LIU Lidong, LI Yi, ZHANG Zhaolun, et al. High-efficiency and noise-robust DCSK approach based on an analytically solvable chaotic oscillator[J]. Electronics Letters, 2018, 54(24): 1384–1385. doi: 10.1049/el.2018.6054
    YANG Hua and JIANG Guoping. Reference-modulated DCSK: A novel chaotic communication scheme[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60(4): 232–236. doi: 10.1109/TCSII.2013.2251949
    FANG Yi, XU Jing, WANG Lin, et al. Performance of MIMO relay DCSK-CD systems over Nakagami fading channels[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60(3): 757–767. doi: 10.1109/TCSI.2012.2215755
    LEE T F. Enhancing the security of password authenticated key agreement protocols based on chaotic maps[J]. Information Sciences, 2015, 290: 63–71. doi: 10.1016/j.ins.2014.08.041
    FANG Yi, HAN Guojun, CHEN Pingping, et al. A survey on DCSK-based communication systems and their application to UWB scenarios[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 1804–1837. doi: 10.1109/COMST.2016.2547458
    张刚, 许嘉平, 张天骐. 基于希尔伯特变换的多用户DCSK通信系统性能分析[J]. 电子与信息学报, 2018, 40(11): 2744–2751. doi: 10.11999/JEIT180110

    ZHANG Gang, XU Jiaping, and ZHANG Tianqi. Performance analyze for multiuser-DCSK communication system based on Hilbert transform[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2744–2751. doi: 10.11999/JEIT180110
    DUAN Junyi and YANG Hua. Phase-orthogonality CDSK: A reliable and effective chaotic communication scheme[J]. IET Communications, 2018, 12(9): 1116–1122. doi: 10.1049/iet-com.2017.1239
    KADDOUM G and SOUJERI E. NR-DCSK: A noise reduction differential chaos shift keying system[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63(7): 648–652. doi: 10.1109/TCSII.2016.2532041
    WANG Shaonan, LIU Yingjie, and MA Weijiao. Design of a novel frequency division scheme for DCSK chaos communication system[C]. The 3rd International Conference on Information Management (ICIM), Chengdu, China, 2017: 317–321. doi: 10.1109/INFOMAN.2017.7950400.
    张刚, 陈和祥, 张天骐. 多用户正交差分混沌键控通信系统[J]. 系统工程与电子技术, 2019, 41(3): 667–673. doi: 10.3969/j.issn.1001-506X.2019.03.28

    ZHANG Gang, CHEN Hexiang, and ZHANG Tianqi. Multiuser orthogonal differential chaos shift keying communication system[J]. Systems Engineering and Electronics, 2019, 41(3): 667–673. doi: 10.3969/j.issn.1001-506X.2019.03.28
    CAI Guofa, FANG Yi, WEN Jinming, et al. Multi-carrier M-ary DCSK system with code index modulation: An efficient solution for chaotic communications[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(6): 1375–1386. doi: 10.1109/JSTSP.2019.2913944
    QUYEN N X. Bit-error-rate evaluation of high-efficiency differential-chaos-shift-keying system over wireless channels[J]. Journal of Circuits, Systems and Computers, 2018, 27(1): 1850008. doi: 10.1142/S0218126618500081
    YANG Hua, JIANG Guoping, and DUAN Junyi. Phase-separated DCSK: A simple delay-component-free solution for chaotic communications[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61(12): 967–971. doi: 10.1109/TCSII.2014.2356914
    QUYEN N X. On the study of a quadrature DCSK modulation scheme for cognitive radio[J]. International Journal of Bifurcation and Chaos, 2017, 27(9): 1750135. doi: 10.1142/S0218127417501358
    YANG H, TANG W K S, CHEN Gangrong, et al. System design and performance analysis of orthogonal multi-level differential chaos shift keying modulation scheme[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(1): 146–156. doi: 10.1109/TCSI.2015.2510622
    XU Weikai, WANG Lin, and CHEN Guanrong. Performance analysis of the CS-DCSK/BPSK communication system[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61(9): 2624–2633. doi: 10.1109/TCSI.2014.2312477
  • 加载中
图(12)
计量
  • 文章访问数:  1023
  • HTML全文浏览量:  330
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-25
  • 修回日期:  2020-09-15
  • 网络出版日期:  2020-12-08
  • 刊出日期:  2021-02-23

目录

    /

    返回文章
    返回