高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分数低阶矩的干涉阵列米波雷达稳健测高方法

陈根华 陈伯孝 秦永

陈根华, 陈伯孝, 秦永. 基于分数低阶矩的干涉阵列米波雷达稳健测高方法[J]. 电子与信息学报, 2021, 43(6): 1676-1682. doi: 10.11999/JEIT190946
引用本文: 陈根华, 陈伯孝, 秦永. 基于分数低阶矩的干涉阵列米波雷达稳健测高方法[J]. 电子与信息学报, 2021, 43(6): 1676-1682. doi: 10.11999/JEIT190946
Genhua CHEN, Baixiao CHEN, Yong QIN. Robust Height Finding Based on Fractional Lower Order Moments for An Interferometric Array Very High Frequency Radar[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1676-1682. doi: 10.11999/JEIT190946
Citation: Genhua CHEN, Baixiao CHEN, Yong QIN. Robust Height Finding Based on Fractional Lower Order Moments for An Interferometric Array Very High Frequency Radar[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1676-1682. doi: 10.11999/JEIT190946

基于分数低阶矩的干涉阵列米波雷达稳健测高方法

doi: 10.11999/JEIT190946
基金项目: 国家自然科学基金(61401187),江西省教育厅科学技术研究项目(GJJ170990)
详细信息
    作者简介:

    陈根华:男,1980年生,副教授,博士,研究方向为阵列雷达信号处理

    陈伯孝:男,1966年生,教授,博士生导师,研究方向为新体制雷达系统设计及其实现、雷达信号处理、目标精确制导与跟踪等

    秦永:男,1982年生,讲师,博士,研究方向为雷达目标跟踪

    通讯作者:

    陈根华 cghnit@126.com

  • 中图分类号: TN958

Robust Height Finding Based on Fractional Lower Order Moments for An Interferometric Array Very High Frequency Radar

Funds: The National Natural Science Foundation of China (61401187), The Science Research Project of Department of Education of Jiangxi Provincial (GJJ170990)
  • 摘要: 限制米波(VHF)雷达低角测高性能的关键因素是波束宽及复杂多径反射信号。该文提出倒T形干涉式阵列以扩展阵列孔径和增加阵列自由度(DOF),并提出基于分数低阶矩(FLOM)的干涉阵列米波雷达低角稳健测高算法。该算法针对复杂多径信号中非高斯分布的散射分量,从理论上证明分数阶协变矩阵(CM)仍保留阵列流形结构特征,并结合2维空间平滑技术实现分数阶协变矩阵的解相干,再由双尺度酉ESPRIT算法实现稳健低角测高。最后从理论上提出干涉阵列的3区基线设计法。实验结果验证干涉阵列与测高算法的有效性与正确性,说明干涉阵列提高了低角目标分辨性能,也说明了分数低阶矩增强了低角测高算法的稳健性,并验证3区基线设计法的理论正确性。
  • 图  1  干涉阵列米波雷达示意图

    图  2  分数阶协变矩阵特征值分布示意图

    图  3  不同分数低阶矩下干涉阵估计的精度

    图  4  平滑方向对估计性能影响

    图  5  不同SNR下分数阶$p$对测高性能的影响

    图  6  RMSE与$\varepsilon $$p$的关系图

    图  7  3区基线设计法

  • [1] BILLINGSLEY J B. Low-angle Radar Land Clutter: Measurements and Empirical Models[M]. Norwich: William Andrew Publishing, 2002: 300–350.
    [2] BARTON D K. Radar Equations for Modern Radar[M]. Norwood: Artech House, 2013: 80–82.
    [3] LIU Yuan, LIU Hongwei, XIA Xianggen, et al. Target localization in multipath propagation environment using dictionary-based sparse representation[J]. IEEE Access, 2019, 7: 150583–150597. doi: 10.1109/ACCESS.2019.2947497
    [4] KABZINSKI T and HABETS E A P. A least squares narrowband DOA estimator with robustness against phase wrapping[C]. 27th European Signal Processing Conference, A Coruna, Spain, 2019: 1–5.
    [5] 陈根华, 陈伯孝. 复杂多径信号下基于空域变换的米波雷达稳健测高算法[J]. 电子与信息学报, 2020, 42(5): 1297–1302. doi: 10.11999/JEIT190554

    CHEN Genhua and CHEN Baixiao. Robust altitude estimation based on spatial sign transform in the presence of diffuse multipath for very high frequency radar[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1297–1302. doi: 10.11999/JEIT190554
    [6] PAL P and VAIDYANATHAN P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167–4181. doi: 10.1109/TSP.2010.2049264
    [7] ELYOUNCHA A, ERIKSSON L E B, and ROMEISER R. Measurements of sea surface currents in the baltic sea region using spaceborne along-track InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8584–8599. doi: 10.1109/TGRS.2019.2921705
    [8] 马济通, 邱天爽, 李蓉, 等. 基于概率密度函数匹配与分数低阶矩的并行盲均衡算法[J]. 电子与信息学报, 2017, 39(7): 1532–1538. doi: 10.11999/JEIT160841

    MA Jitong, QIU Tianshuang, LI Rong, et al. Concurrent blind equalization algorithm based on probability density function matching and fractional lower order moments[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1532–1538. doi: 10.11999/JEIT160841
    [9] WONG K T and ZOLTOWSKI M D. Direction-finding with sparse rectangular dual-size spatial invariance Array[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(4): 1320–1336. doi: 10.1109/7.722717
    [10] XU Weichao, CHEN Changrun, DAI Jisheng, et al. Detection of known signals in additive impulsive noise based on Spearman’s rho and Kendall’s tau[J]. Signal Processing, 2019, 161: 165–179. doi: 10.1016/j.sigpro.2019.03.017
    [11] LIU T H and MENDEL J M. A subspace-based direction finding algorithm using fractional lower order statistics[J]. IEEE Transactions on Signal Processing, 2001, 49(8): 1605–1613. doi: 10.1109/78.934131
    [12] OPPENHEIM A V, WILLSKY A S, and NAWAB S H. Signals & Systems[M]. 2nd ed. Beijing: Prentice-Hall Press, 2014: 654–720.
    [13] ZUO Weiliang, XIN Jingmin, LIU Wenyi, et al. Localization of near-field sources based on linear prediction and oblique projection operator[J]. IEEE Transactions on Signal Processing, 2019, 67(2): 415–430. doi: 10.1109/TSP.2018.2883034
  • 加载中
图(7)
计量
  • 文章访问数:  824
  • HTML全文浏览量:  229
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-27
  • 修回日期:  2021-02-23
  • 网络出版日期:  2021-03-12
  • 刊出日期:  2021-06-18

目录

    /

    返回文章
    返回