高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进免疫粒子群优化算法的室内可见光通信三维定位方法

陈勇 郑瀚 沈奇翔 刘焕淋

陈勇, 郑瀚, 沈奇翔, 刘焕淋. 基于改进免疫粒子群优化算法的室内可见光通信三维定位方法[J]. 电子与信息学报, 2021, 43(1): 101-107. doi: 10.11999/JEIT190936
引用本文: 陈勇, 郑瀚, 沈奇翔, 刘焕淋. 基于改进免疫粒子群优化算法的室内可见光通信三维定位方法[J]. 电子与信息学报, 2021, 43(1): 101-107. doi: 10.11999/JEIT190936
Yong CHEN, Han ZHENG, Qixiang SHEN, Huanlin LIU. Indoor Three-dimensional Positioning System Based on Visible Light Communication Using Improved Immune PSO Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(1): 101-107. doi: 10.11999/JEIT190936
Citation: Yong CHEN, Han ZHENG, Qixiang SHEN, Huanlin LIU. Indoor Three-dimensional Positioning System Based on Visible Light Communication Using Improved Immune PSO Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(1): 101-107. doi: 10.11999/JEIT190936

基于改进免疫粒子群优化算法的室内可见光通信三维定位方法

doi: 10.11999/JEIT190936
基金项目: 国家自然科学基金(51977021),重庆市自然科学基金面上项目(cstc2019jcyj-msxmX0613)
详细信息
    作者简介:

    陈勇:男,1963年生,博士,教授,研究方向为可见光通信

    郑瀚:男,1996年生,硕士生,研究方向为室内可见光通信定位与导航

    沈奇翔:男,1995年生,硕士,研究方向为室内可见光通信定位

    刘焕淋:女,1970年生,博士,教授,主要研究方向为光纤通信及信号处理等

    通讯作者:

    陈勇 chenyong@cqupt.edu.cn

  • 中图分类号: TN929.1

Indoor Three-dimensional Positioning System Based on Visible Light Communication Using Improved Immune PSO Algorithm

Funds: The National Natural Science Foundation of China (51977021), The Chongqing Natural Science Foundation (cstc2019jcyj-msxmX0613)
  • 摘要:

    针对室内可见光通信中3维定位精度不高和定位时间较长的问题,该文提出基于改进免疫粒子群(IIMPSO)算法的室内可见光通信(VLC) 3维定位方法。通过分析室内多径效应,选取合适的视场角(FOV)以减少反射影响,同时完善了倾斜状态下的定位模型,并采用卡尔曼滤波算法以降低环境干扰对接收功率的影响,在此基础上与改进的免疫粒子群算法相融合。仿真结果表明,在5 m×5 m×3 m的室内环境中,该文所提出的3维定位系统平均定位误差为0.031 m,定位时长为2.3 s。与现有的3维定位系统进行比较,其定位精度与收敛速度均得到明显改善。

  • 图  1  室内可见光通信模型

    图  2  倾斜状态下可见光通信模型示意图

    图  3  接收平面总接收功率分布图

    图  4  接收平面接收到直射功率分布图

    图  5  接收平面接收到非直射功率分布图

    图  6  基于卡尔曼滤波算法的接收功率滤波优化图

    图  7  基于IIMPSO算法的室内可见光3维定位流程图

    图  8  位于中心A处的粒子迭代分布及适应度收敛曲线图

    图  9  接收端高度为0.5 m下定位误差图及误差柱状图

    图  10  接收端高度为1.5 m下定位误差图及误差柱状图

    表  1  免疫粒子群与3维定位问题的映射关系

    免疫算法粒子群算法3维定位问题
    抗原适应度函数定位误差和约束条件
    抗体粒子可行的定位位置
    抗原的识别粒子的适应度值评估3维定位问题的分析
    亲和度适应度值可行解的匹配程度
    细胞活化粒子选择选择高质量的可行解
    记忆细胞全局最优粒子定位搜索过程中的最优解
    免疫调节对当前解浓度和亲和度控制
    下载: 导出CSV

    表  2  IIMPSO算法参数表

    符号参数数值
    c1max, c2max学习因子最大值2.2
    c1min, c2min学习因子最小值0.2
    N粒子群数目30
    titer最大迭代次数100
    Pc交叉概率0.30
    Pm变异概率0.05
    vmax最大速度限制0.3
    cth粒子相似度阈值0.1
    α协调系数0.5
    fth适应度值阈值0.4
    下载: 导出CSV

    表  3  预处理效果测试(平均定位误差(m))

    状况CPSO[14]ACO[7]IIMPSO
    接收平面水平和RSS未处理0.0980.0840.054
    接收平面倾斜0.0720.0680.047
    RSS处理0.0650.0580.042
    接收平面倾斜并采用RSS处理0.0480.0430.035
    下载: 导出CSV

    表  4  IIMPSO算法参数表

    参数符号
    房间大小L×W×H5 m×5 m×3 m
    接收端高度H1 m
    发射功率Pt452 mW
    半功率角Φ1/270°
    阵列中LED的数目3×3
    LED的间隔0.01 m
    集中器增益Ts(Ψ)1
    PD的接收面积A1 cm2
    O/E 转换效率0.53 A/W
    PD的折射率n1.5
    LED中心发光强度I(0)23.81cd
    下载: 导出CSV

    表  5  不同算法有效性验证

    指标CPSO[14]ACO[7]IGA[5]SAPSO[6]IIMPSO
    算法定位时间(s)4.445.226.215.412.03
    平均定位误差(m)0.0640.0430.0560.0300.031
    最大定位误差(m)0.1550.0750.0130.0840.082
    下载: 导出CSV
  • KHAN L U. Visible light communication: Applications, architecture, standardization and research challenges[J]. Digital Communications and Networks, 2017, 3(2): 78–88. doi: 10.1016/j.dcan.2016.07.004
    YANG S H, KIM H S, SON Y H, et al. Three-Dimensional visible light indoor localization using AOA and RSS with multiple optical receivers[J]. Journal of Lightwave Technology, 2014, 32(14): 2480–2485. doi: 10.1109/JLT.2014.2327623
    ALONSO-GONZÁLEZ I, SÁNCHEZ-RODRÍGUE D, LEY-BOSCH C, et al. Discrete indoor three-dimensional localization system based on neural networks using visible light communication[J]. Sensors, 2018, 18(4): 1040. doi: 10.3390/s18041040
    YASIR M, HO S W, and VELLAMBI B N. Indoor positioning system using visible light and accelerometer[J]. Journal of Lightwave Technology, 2014, 32(19): 3306–3316. doi: 10.1109/jlt.2014.2344772
    CHEN Hao, GUAN Weipeng, LI Simin, et al. Indoor high precision three-dimensional positioning system based on visible light communication using modified genetic algorithm[J]. Optics Communications, 2018, 413: 103–120. doi: 10.1016/j.optcom.2017.12.045
    CAI Ye, GUAN Weipeng, WU Yuxiang, et al. Indoor high precision three-dimensional positioning system based on visible light communication using particle swarm optimization[J]. IEEE Photonics Journal, 2017, 9(6): 7908120. doi: 10.1109/JPHOT.2017.2771828
    吴兴邦, 文尚胜, 华珺. 基于蚁群算法的室内可见光高精度三维定位系统[J]. 光子学报, 2017, 46(12): 1206004. doi: 10.3788/gzxb20174612.1206004

    WU Xingbang, WEN Shangsheng, and HUA Jun. High precision 3D positioning system design using visible light communication based on ant colony algorithm[J]. Acta Photonica Sinica, 2017, 46(12): 1206004. doi: 10.3788/gzxb20174612.1206004
    张健, 王辉. 一种改进的可见光通信系统SNR均匀性优化方法[J]. 重庆邮电大学学报: 自然科学版, 2015, 27(1): 78–82. doi: 10.3979/j.issn.1673-825X.2015.01.014

    ZHANG Jian and WANG Hui. An improved SNR uniformity optimization scheme for VLC system[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2015, 27(1): 78–82. doi: 10.3979/j.issn.1673-825X.2015.01.014
    LIU Huanlin, XIA Peijie, CHEN Yong, et al. Interference graph-based dynamic frequency reuse in optical attocell networks[J]. Optics Communications, 2017, 402: 527–534. doi: 10.1016/j.optcom.2017.06.075
    GU Wenjun, AMINIKASHANI M, DENG Peng, et al. Impact of multipath reflections on the performance of indoor visible light positioning systems[J]. Journal of Lightwave Technology, 2016, 34(10): 2578–2587. doi: 10.1109/JLT.2016.2541659
    LU Chengye, WU Sheng, JIANG Chunxiao, et al. Weak harmonic signal detection method in chaotic interference based on extended Kalman filter[J]. Digital Communications and Networks, 2019, 5(1): 51–55. doi: 10.1016/j.dcan.2018.10.004
    LIN Chengjian, LIU Yongcheng, and LEE C. An efficient neural fuzzy network based on immune particle swarm optimization for prediction and control applications[J]. International Journal of Innovative Computing, Information & Control, 2008, 4(12): 1711–1722.
    XU Yinfan, ZHAO Jiaqi, SHI Jianyang, et al. Reversed three-dimensional visible light indoor positioning utilizing annular receivers with multi-photodiodes[J]. Sensors, 2016, 16(8): 1254. doi: 10.3390/s16081254
    ZHANG Meiqi, LI Fangjie, GUAN Weipeng, et al. A three-dimensional indoor positioning technique based on visible light communication using chaotic particle swarm optimization algorithm[J]. Optik, 2018, 165: 54–73. doi: 10.1016/j.ijleo.2018.03.120
    LÜ Huichao, FENG Lihui, YANG Aiying, et al. High accuracy VLC Indoor positioning system with differential detection[J]. IEEE Photonics Journal, 2017, 9(3): 7903713. doi: 10.1109/JPHOT.2017.2698240
    陈勇, 程亚男, 刘焕淋. 利用改进粒子群优化算法解调光传感重叠光谱信号[J]. 中国激光, 2018, 45(7): 0710003. doi: 10.3788/CJL201845.0710003

    CHEN Yong, CHENG Ya’nan, and LIU Huanlin. Demodulation of light sensing overlapping spectral signal by improved particle swarm optimization algorithm[J]. Chinese Journal of Lasers, 2018, 45(7): 0710003. doi: 10.3788/CJL201845.0710003
    何莉, 王淼, 李博. 面向单目标优化的集成粒子群算法[J]. 重庆邮电大学学报: 自然科学版, 2017, 29(4): 527–534. doi: 10.3979/j.issn.1673-825X.2017.04.016

    HE Li, WANG Miao, and LI Bo. Ensemble particle swarm optimizer for single objective optimization[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2017, 29(4): 527–534. doi: 10.3979/j.issn.1673-825X.2017.04.016
    王旭东, 崔玉, 吴楠. 可见光多维无载波幅度相位调制系统[J]. 电子与信息学报, 2017, 39(12): 3004–3012. doi: 10.11999/JEIT170276

    WANG Xudong, CUI Yu, and WU Nan. Multi-dimensional carrierless amplitude and phase modulation for visible light communication system[J]. Journal of Electronics &Information Technology, 2017, 39(12): 3004–3012. doi: 10.11999/JEIT170276
    叶崇光, 冯人海, 毛陆虹. 采用ACO-OFDM调制新型可见光-射频识别标签系统[J]. 重庆邮电大学学报: 自然科学版, 2019, 31(1): 72–79. doi: 10.3979/j.issn.1673-825X.2019.01.010

    YE Chongguang, FENG Renhai, and MAO Luhong. New kind of visible light-RFID with ACO-OFDM modulation[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2019, 31(1): 72–79. doi: 10.3979/j.issn.1673-825X.2019.01.010
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  1985
  • HTML全文浏览量:  810
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-21
  • 修回日期:  2020-06-10
  • 网络出版日期:  2020-07-17
  • 刊出日期:  2021-01-15

目录

    /

    返回文章
    返回