高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高效可扩展改进残差结构神经网络的舰船目标识别技术

付哲泉 李尚生 李相平 但波 王旭坤

付哲泉, 李尚生, 李相平, 但波, 王旭坤. 基于高效可扩展改进残差结构神经网络的舰船目标识别技术[J]. 电子与信息学报, 2020, 42(12): 3005-3012. doi: 10.11999/JEIT190913
引用本文: 付哲泉, 李尚生, 李相平, 但波, 王旭坤. 基于高效可扩展改进残差结构神经网络的舰船目标识别技术[J]. 电子与信息学报, 2020, 42(12): 3005-3012. doi: 10.11999/JEIT190913
Zhequan FU, Shangsheng LI, Xiangping LI, Bo DAN, Xukun WANG. Ship Target Recognition Based on Highly Efficient Scalable Improved Residual Structure Neural Network[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3005-3012. doi: 10.11999/JEIT190913
Citation: Zhequan FU, Shangsheng LI, Xiangping LI, Bo DAN, Xukun WANG. Ship Target Recognition Based on Highly Efficient Scalable Improved Residual Structure Neural Network[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3005-3012. doi: 10.11999/JEIT190913

基于高效可扩展改进残差结构神经网络的舰船目标识别技术

doi: 10.11999/JEIT190913
详细信息
    作者简介:

    付哲泉:男,1992年生,博士生,研究方向为精确制导技术及其智能化

    李尚生:男,1965年生,教授,研究方向为导弹制导技术

    李相平:男,1963年生,教授,研究方向为精确制导和目标探测技术

    但波:男,1985年生,讲师,研究方向为目标识别与选择技术

    王旭坤:男,1995年生,硕士生,研究方向为雷达目标识别技术

    通讯作者:

    付哲泉 fuzq2413@163.com

  • 中图分类号: TN957.51

Ship Target Recognition Based on Highly Efficient Scalable Improved Residual Structure Neural Network

  • 摘要: 神经网络的深度在一定范围内与识别效果成正相关,为解决超出范围后网络层数增加识别准确率却下降的模型饱和问题,该文提出一种具有高效的微块内部结构和残差网络结构的神经网络模型,用于对舰船目标基于高分辨距离像的分类识别。该方法利用具有小尺度卷积核的卷积模块提取目标的稳定可分特征,同时利用联合损失函数约束目标特征的类内距离提高识别能力。仿真结果表明,该模型相比于其他常见网络结构,在模型参数更少的情况下,识别效果更好,同时具有较强的噪声鲁棒性。
  • 图  1  针对HRRP的CNN结构示意图

    图  2  残差结构

    图  3  卷积模块结构

    图  4  本文所提模型框图

    图  5  某艘舰船模型图及其对应幅值归一化后的HRRP图

    图  6  HRRP数据平移截取示意图

    图  7  信噪比为15 dB时不同模型的特征可视化图

    表  1  模型A各阶段参数情况

    阶段输出结构参数个数
    初始卷积层128×1×97×1, 9, s=299
    左侧支路右侧支路
    卷积模块164×1×181×1, 9
    3×1, 3, s=2, x=3
    1×1, 12
    1×1, 15, s=2585
    卷积模块232×1×361×1, 18
    3×1, 6, s=2, x=3
    1×1, 24
    1×1, 30, s=21980
    卷积模块316×1×721×1, 36
    3×1, 12, s=2, x=3
    1×1, 48
    1×1, 60, s=27200
    卷积模块48×1×1441×1, 72
    3×1, 24, s=2, x=3
    1×1, 96
    1×1, 120, s=227360
    全连接层1144全局平均池化+全局最大值池化0
    全连接层22288
    输出层13SL+CL26
    参数总数37538
    下载: 导出CSV

    表  2  不同复杂度模型在不同信噪比数据集下的识别准确率(%)

    模型名称识别时间(μs)信噪比(dB)
    051015
    模型A25860.4289.4198.2199.83
    模型B32672.9594.4199.1599.89
    模型C32373.7893.7199.0799.86
    下载: 导出CSV

    表  3  CNN模型结构和参数明细

    阶段输出维度网络结构参数个数
    卷积层1256×1×83×1, 8, s=164
    池化层1128×1×82×1, s=20
    卷积层2128×1×163×1, 16, s=1464
    池化层264×1×162×1, s=20
    卷积层364×1×323×1, 32, s=11696
    池化层332×1×322×1, s=20
    卷积层432×1×643×1, 64, s=16464
    池化层416×1×642×1, s=20
    卷积层516×1×641×1, 64, s=14416
    池化层58×1×642×1, s=20
    全连接层16432832
    全连接层22130
    输出层13SL39
    参数总数46105
    下载: 导出CSV

    表  4  SDSAE&KNN模型结构和参数明细

    阶段输出维度参数个数
    隐藏层1150×138550
    隐藏层2100×115100
    隐藏层350×15050
    隐藏层410×1510
    参数总数59210
    下载: 导出CSV

    表  5  SCAE模型结构和参数明细

    阶段输出维度网络结构参数个数
    卷积层1256×1×1285×1, 128, s=1768
    池化层1128×1×1282×1, s=20
    卷积层2128×1×645×1, 64, s=141024
    池化层264×1×642×1, s=20
    卷积层364×1×323×1, 32, s=16176
    池化层332×1×322×1, s=20
    卷积层432×1×163×1, 16, s=11552
    池化层416×1×162×1, s=20
    卷积层516×1×81×1, 8, s=1136
    池化层58×1×82×1, s=20
    输出层13SL845
    参数总数50501
    下载: 导出CSV

    表  6  不同信噪比条件下本节模型与对比模型识别准确率(%)

    模型名称识别时间(μs)信噪比(dB)
    051015
    模型A25860.4289.4198.2199.83
    CNN6958.2286.9195.5198.79
    SCAE4754.7886.5894.4498.78
    SDSAE&KNN6846.5083.9493.4498.65
    下载: 导出CSV
  • 魏存伟, 段发阶, 刘先康. 基于宽带雷达HRRP舰船目标长度估计算法[J]. 系统工程与电子技术, 2018, 40(9): 1960–1965. doi: 10.3969/j.issn.1001-506X.2018.09.10

    WEI Cunwei, DUAN Fajie, and LIU Xiankang. Length estimation method of ship target based on wide-band radar’s HRRP[J]. Systems Engineering and Electronics, 2018, 40(9): 1960–1965. doi: 10.3969/j.issn.1001-506X.2018.09.10
    贺思三, 赵会宁, 张永顺. 基于时频域联合滤波的中段群目标信号分离[J]. 雷达学报, 2015, 4(5): 545–551. doi: 10.12000/JR15008

    HE Sisan, ZHAO Huining, and ZHANG Yongshun. Signal separation for target group in midcourse based on time-frequency filtering[J]. Journal of Radars, 2015, 4(5): 545–551. doi: 10.12000/JR15008
    吴佳妮, 陈永光, 代大海, 等. 基于快速密度搜索聚类算法的极化HRRP分类方法[J]. 电子与信息学报, 2016, 38(10): 2461–2467. doi: 10.11999/JEIT151457

    WU Jiani, CHEN Yongguang, DAI Dahai, et al. Target recognition for polarimetric HRRP based on fast density search clustering method[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2461–2467. doi: 10.11999/JEIT151457
    李建伟, 曲长文, 彭书娟, 等. 基于生成对抗网络和线上难例挖掘的SAR图像舰船目标检测[J]. 电子与信息学报, 2019, 41(1): 143–149. doi: 10.11999/JEIT180050

    LI Jianwei, QU Changwen, PENG Shujuan, et al. Ship detection in SAR images based on generative adversarial network and online hard examples mining[J]. Journal of Electronics &Information Technology, 2019, 41(1): 143–149. doi: 10.11999/JEIT180050
    杜兰, 魏迪, 李璐, 等. 基于半监督学习的SAR目标检测网络[J]. 电子与信息学报, 2020, 42(1): 154–163. doi: 10.11999/JEIT190783

    DU Lan, WEI Di, LI Lu, et al. SAR target detection network via semi-supervised learning[J]. Journal of Electronics &Information Technology, 2020, 42(1): 154–163. doi: 10.11999/JEIT190783
    罗会兰, 卢飞, 孔繁胜. 基于区域与深度残差网络的图像语义分割[J]. 电子与信息学报, 2019, 41(11): 2777–2786. doi: 10.11999/JEIT190056

    LUO Huilan, LU Fei, and KONG Fansheng. Image semantic segmentation based on region and deep residual network[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2777–2786. doi: 10.11999/JEIT190056
    XING Shihong and ZHANG Shaokang. Ship model recognition based on convolutional neural networks[C]. 2018 IEEE International Conference on Mechatronics and Automation, Changchun, China, 2018: 144-148. doi: 10.1109/ICMA.2018.8484362.
    杨宏宇, 王峰岩. 基于深度卷积神经网络的气象雷达噪声图像语义分割方法[J]. 电子与信息学报, 2019, 41(10): 2373–2381. doi: 10.11999/JEIT190098

    YANG Hongyu and WANG Fengyan. Meteorological radar noise image semantic segmentation method based on deep convolutional neural network[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2373–2381. doi: 10.11999/JEIT190098
    王鑫, 李可, 宁晨, 等. 基于深度卷积神经网络和多核学习的遥感图像分类方法[J]. 电子与信息学报, 2019, 41(5): 1098–1105. doi: 10.11999/JEIT180628

    WANG Xin, LI Ke, NING Chen, et al. Remote sensing image classification method based on deep convolution neural network and multi-kernel learning[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1098–1105. doi: 10.11999/JEIT180628
    郭晨, 简涛, 徐从安, 等. 基于深度多尺度一维卷积神经网络的雷达舰船目标识别[J]. 电子与信息学报, 2019, 41(6): 1302–1309. doi: 10.11999/JEIT180677

    GUO Chen, JIAN Tao, XU Congan, et al. Radar HRRP target recognition based on deep multi-scale 1D convolutional neural network[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1302–1309. doi: 10.11999/JEIT180677
    王容川, 庄志洪, 王宏波, 等. 基于卷积神经网络的雷达目标HRRP分类识别方法[J]. 现代雷达, 2019, 41(5): 33–38. doi: 10.16592/j.cnki.1004-7859.2019.05.007

    WANG Rongchuan, ZHUANG Zhihong, WANG Hongbo, et al. HRRP classification and recognition method of radar target based on convolutional neural network[J]. Modern Radar, 2019, 41(5): 33–38. doi: 10.16592/j.cnki.1004-7859.2019.05.007
    刘兴旺. 一种多层预训练卷积神经网络在图像识别中的应用[D]. [硕士论文], 中南民族大学, 2018.

    LIU Xingwang. The application of a multi-layers pre-training convolutional neural network in image recognition[D]. [Master dissertation], South-Central University for Nationalities, 2018.
    赵飞翔, 刘永祥, 霍凯. 基于栈式降噪稀疏自动编码器的雷达目标识别方法[J]. 雷达学报, 2017, 6(2): 149–156. doi: 10.12000/JR16151

    ZHAO Feixiang, LIU Yongxiang, and HUO Kai. Radar target recognition based on stacked denoising sparse autoencoder[J]. Journal of Radars, 2017, 6(2): 149–156. doi: 10.12000/JR16151
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Red Hook, United States, 2012: 1097–1105.
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, United States, 2015: 1–14.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, United States, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]. The 31st AAAI Conference on Artificial Intelligence, San Francisco, United States, 2017: 4278–4284.
    WEN Yandong, ZHANG Kaipeng, LI Zhifeng, et al. A discriminative feature learning approach for deep face recognition[C]. The 14th European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 499–515. doi: 10.1007/978-3-319-46478-7_31.
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  5237
  • HTML全文浏览量:  1473
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-14
  • 修回日期:  2020-04-16
  • 网络出版日期:  2020-04-25
  • 刊出日期:  2020-12-08

目录

    /

    返回文章
    返回