Echo Power Screening and Digital Land Classification Data-assisted Wind Speed Estimation of Low-altitude Wind-shear
-
摘要: 针对非均匀杂波环境下,低空风切变风速估计不准的问题,该文提出一种回波功率筛选与数字地表分类数据(DLCD)辅助的低空风切变风速估计方法。该方法首先利用样本回波功率对训练样本进行初选,然后利用DLCD计算各样本间的相似度,并从功率较大的训练样本中选取样本相似度较高的训练样本估计待测距离单元的杂波协方差矩阵,最后利用广义相邻多波束(GMB)-局域联合处理(JDL)的方法实现低空风切变风速的有效估计。Abstract: In order to solve the problem of inaccurate estimation of low-altitude wind-shear wind speed under non-uniform clutter environment, a kind of low-altitude wind-shear wind speed estimation method based on echo power screening and Digital Land Classification Data (DLCD)-assisted is proposed. The method firstly uses the sample echo power to select initially the training samples, then uses the DLCD to calculate the similarity between the samples, and selects the training samples with higher sample similarity from the higher-powered training samples to estimate the clutter covariance matrix, finally uses the Generalized adjacent Multiple-Beam (GMB)-Joint Domain Localized (JDL) method to achieve wind speed effective estimation of low-altitude wind-shear.
-
表 1 雷达与载机仿真参数设置
参数名称 数值 参数名称 数值 飞行高度(m) 600 阵元数 8 载机速度(m/s) 75 采样周期数 32 雷达工作波长(m) 0.05 主瓣方向(°) (60, 0) 脉冲重复周期(ms) 0.143 杂噪比(dB) 40 距离分辨率(m) 150 信噪比(dB) 5 表 2 风速估计均方根误差
风速估计方法 均方根误差(m/s) 均匀环境最优STAP 1.8128 均匀环境GMB-JDL 2.0617 非均匀环境最优STAP 12.0579 非均匀环境GMB-JDL 8.6787 非均匀环境样本挑选最优STAP 24.4810 本文所提方法 6.0489 -
[1] 李海, 李怡静, 吴仁彪. 载机偏航下基于广义相邻多波束自适应处理的低空风切变风速估计[J]. 电子与信息学报, 2019, 41(7): 1728–1734. doi: 10.11999/JEIT180758LI Hai, LI Yijing, and WU Renbiao. Generalized adjacent multi-beam adaptive processing based low-altitude wind-shear wind speed estimation under aircraft yawing[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1728–1734. doi: 10.11999/JEIT180758 [2] WILSON J W and WAKIMOTO R M. The discovery of the downburst: T. T. Fujita's contribution[J]. Bulletin of the American Meteorological Society, 2001, 82(1): 49–62. doi: 10.1175/1520-0477(2001)082<0049:TDOTDT>2.3.CO;2 [3] RTCA/DO-220 Minimum operational performance standards for airborne weather radar with forward-looking wind shear capability[S]. Washington DC: RTCA Inc, 2016. [4] 李海, 王杰. 基于CMCAP的低空风切变风速估计方法[J]. 系统工程与电子技术, 2019, 41(3): 529–533. doi: 10.3969/j.issn.1001-506X.2019.03.10LI Hai and WANG Jie. Low-altitude wind-shear wind speed estimation based on CMCAP[J]. Systems Engineering and Electronics, 2019, 41(3): 529–533. doi: 10.3969/j.issn.1001-506X.2019.03.10 [5] LOEW E, SALAZAR J, TSAI P, et al. Architecture overview and system performance of the airborne phased array radar (APAR) for atmospheric research[R]. Report of National Center for Atmospheric Research, 2013. [6] KLEMM R. Principles of Space-Time Adaptive Processing[M]. London: Institution of Electrical Engineers, 2002: 1–32. [7] 王永良, 彭应宁. 空时自适应信号处理[M]. 北京: 清华大学出版社, 2000: 26–87.WANG Yongliang and PENG Yingning. Space Time Adaptive Processing[M]. Beijing: Tsinghua University Press, 2000: 26–87. [8] WARD J. Space-time adaptive processing for airborne radar data systems[R]. Lexington, Massachusetts: Lincoln Laboratory of MIT, 1994: 25–45. [9] 王齐珍. 非均匀环境下的机载相控阵雷达STAP算法研究[D]. [硕士论文], 南京航空航天大学, 2009.WANG Qizhen. Study on STAP algorithm of airborne phased array radar in nonhomogeneous environments[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2009. [10] RABIDEAU D J and STEINHARDT A O. Improved adaptive clutter cancellation through data-adaptive training[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 879–891. doi: 10.1109/7.784058 [11] WANG Yongliang, CHEN Jianwen, BAO Zheng, et al. Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(1): 70–81. doi: 10.1109/taes.2003.1188894 [12] ZHANG Bowen, DAI Zhiguang, and XIE Lan. Secondary non-homogeneity detector for STAP[C]. The 3rd IEEE International Conference on Signal and Image Processing, Shenzhen, China, 2018: 382–384. [13] 侯静, 胡孟凯, 王子微. 一种改进的知识辅助MIMO雷达空时自适应处理方法[J]. 电子与信息学报, 2019, 41(4): 795–800. doi: 10.11999/JEIT180557HOU Jing, HU Mengkai, and WANG Ziwei. An improved knowledge-aided space-time adaptive signal processing algorithm for MIMO radar[J]. Journal of Electronics &Information Technology, 2019, 41(4): 795–800. doi: 10.11999/JEIT180557 [14] LI Hai, WANG Jie, FAN Yi, et al. High-fidelity inhomogeneous ground clutter simulation of airborne phased array PD radar aided by digital elevation model and digital land classification data[J]. Sensors, 2018, 18(9): 2925. doi: 10.3390/s18092925 [15] BRINGI V N and CHANDRASEKAR V. Polarimetric Doppler Weather Radar: Principles and Applications[M]. Cambridge: Cambridge University Press, 2005: 1–100. [16] CAPRARO C T, CAPRARO G T, BRADARIC I, et al. Implementing digital terrain data in knowledge-aided space-time adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1080–1099. doi: 10.1109/taes.2006.248199