高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于同步性脑网络的支持张量机情绪分类研究

黄丽亚 苏义博 马捃凯 丁威威 宋传承

黄丽亚, 苏义博, 马捃凯, 丁威威, 宋传承. 基于同步性脑网络的支持张量机情绪分类研究[J]. 电子与信息学报, 2020, 42(10): 2462-2470. doi: 10.11999/JEIT190882
引用本文: 黄丽亚, 苏义博, 马捃凯, 丁威威, 宋传承. 基于同步性脑网络的支持张量机情绪分类研究[J]. 电子与信息学报, 2020, 42(10): 2462-2470. doi: 10.11999/JEIT190882
Liya HUANG, Yibo SU, Junkai MA, Weiwei DING, Chuancheng SONG. Research on Support Tensor Machine Based on Synchronous Brain Network for Emotion Classification[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2462-2470. doi: 10.11999/JEIT190882
Citation: Liya HUANG, Yibo SU, Junkai MA, Weiwei DING, Chuancheng SONG. Research on Support Tensor Machine Based on Synchronous Brain Network for Emotion Classification[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2462-2470. doi: 10.11999/JEIT190882

基于同步性脑网络的支持张量机情绪分类研究

doi: 10.11999/JEIT190882
基金项目: 国家自然科学基金(61977039)
详细信息
    作者简介:

    黄丽亚:女,1972年生,教授,研究方向为物联网RFID技术、EDA技术以及通信网络的QoS性能研究

    苏义博:男,1995年生,硕士生,研究方向为脑电信号分析及嵌入式系统应用

    马捃凯:男,1996年生,硕士生,研究方向为脑电信号分析

    丁威威:男,1996年生,硕士生,研究方向为经颅电刺激与人脑记忆力

    通讯作者:

    苏义博 2524470353@qq.com

  • 中图分类号: TN911.7; TP391.4

Research on Support Tensor Machine Based on Synchronous Brain Network for Emotion Classification

Funds: The National Natural Science Foundation of China (61977039)
  • 摘要: 一直以来,情绪是心理学、教育学、信息科学等多个学科的研究热点,脑电信号(EEG)因其客观、不易伪装的特点,在情绪识别领域受到广泛关注。由于人类情绪是大脑多个脑区相互作用产生的,该文提出一种基于同步性脑网络的支持张量机情绪分类算法(SBN-STM),该算法采用相位锁定值(PLV)构建了同步性脑网络,分析多导联脑电信号之间的同步性和相关性,并生成2阶张量序列作为训练集,运用支持张量机(STM)模型实现正负情绪的二分类。该文基于DEAP脑电情绪数据库,详细分析了同步性脑网络张量序列的选取方法,最佳张量序列窗口的大小和位置,解决了传统情绪分类算法特征冗余的问题,提高了模型训练速度。仿真实验表明,基于支持张量机的同步性脑网络分类方法的情绪准确率优于支持向量机、C4.5决策树、人工神经网络、K近邻等以向量为特征的情绪分类模型。
  • 图  1  SBN-STM算法架构图

    图  2  张量序列窗口示意图

    图  3  窗口半径为1 s的张量序列示意图

    图  4  32导联位置示意图[24]

    图  5  各时刻的正向情绪PLV矩阵生成的灰度图片

    图  6  各时刻脑网络灰度图及节点连接图

    图  7  窗口不同中点位置准确率比较

    图  8  窗口不同中点位置平均分类准确率比较

    图  9  窗口不同中点位置分类准确率盒须图

    图  10  窗口在不同半径下的分类准确率比较

    图  11  窗口在不同半径下的平均分类准确率比较

    图  12  窗口在不同半径下的准确率盒须图

    表  1  各分类算法情绪二分类准确率比较

    数据集分类算法特征特征类型二分类准确率(%)
    DEAP数据库SBN-STM同步性脑网络2阶张量78.30
    SVM[2]各频段的功率谱密度向量73.30
    C4.5决策树[2]各频段的功率谱密度72.50
    KNN[3]各小波频段的能量、熵、统计特征72.87
    ANN[4]α, β, θ 3个频段上的双谱64.84
    LR[25]皮尔逊相关系数脑功能连接网络2阶张量70.22
    下载: 导出CSV
  • 赵国朕, 宋金晶, 葛燕, 等. 基于生理大数据的情绪识别研究进展[J]. 计算机研究与发展, 2016, 53(1): 80–92. doi: 10.7544/issn1000-1239.2016.20150636

    ZHAO Guozhen, SONG Jinjing, GE Yan, et al. Advances in emotion recognition based on physiological big data[J]. Journal of Computer Research and Development, 2016, 53(1): 80–92. doi: 10.7544/issn1000-1239.2016.20150636
    THAMMASAN N, MORIYAMA K, FUKUI K I, et al. Familiarity effects in EEG-based emotion recognition[J]. Brain Informatics, 2017, 4(1): 39–50. doi: 10.1007/s40708-016-0051-5
    MERT A and AKAN A. Emotion recognition from EEG signals by using multivariate empirical mode decomposition[J]. Pattern Analysis and Applications, 2018, 21(1): 81–89. doi: 10.1007/s10044-016-0567-6
    KUMAR N, KHAUND K, and HAZARIKA S M. Bispectral analysis of EEG for emotion recognition[J]. Procedia Computer Science, 2016, 84: 31–35. doi: 10.1016/j.procs.2016.04.062
    PINCUS S M and VISCARELLO R R. Approximate entropy: A regularity measure for fetal heart rate analysis[J]. Obstetrics and Gynecology, 1992, 79(2): 249–255.
    郝志峰, 谢蔚涛, 蔡瑞初, 等. 基于因果强度的时序因果关系发现算法[J]. 计算机工程与设计, 2017, 38(1): 132–137. doi: 10.16208/j.issn1000-7024.2017.01.025

    HAO Zhifeng, XIE Weitao, CAI Ruichu, et al. Causal inference on time series using causal strength[J]. Computer Engineering and Design, 2017, 38(1): 132–137. doi: 10.16208/j.issn1000-7024.2017.01.025
    刘澄玉, 赵莉娜, 刘常春. 生理信号时间序列周期性和平稳性对近似熵和样本熵算法的影响分析[J]. 北京生物医学工程, 2012, 31(2): 154–158, 163. doi: 10.3969/j.issn.1002-3208.2012.02.09

    LIU Chengyu, ZHAO Li’na, and LIU Changchun. Influence analysis of physiological time-series periodicity and stability for approximate entropy and sample entropy[J]. Beijing Biomedical Engineering, 2012, 31(2): 154–158, 163. doi: 10.3969/j.issn.1002-3208.2012.02.09
    ITO T, HEARNE L, MILL R, et al. Discovering the computational relevance of brain network organization[J]. Trends in Cognitive Sciences, 2020, 24(1): 25–38. doi: 10.1016/j.tics.2019.10.005
    高佳, 王蔚. 基于稀疏贝叶斯网络的情绪脑电的有效性脑网络研究[J]. 生物医学工程学杂志, 2015, 32(5): 945–951. doi: 10.7507/1001-5515.20150169

    GAO Jia and WANG Wei. Research of effective network of emotion electroencephalogram based on sparse Bayesian network[J]. Journal of Biomedical Engineering, 2015, 32(5): 945–951. doi: 10.7507/1001-5515.20150169
    武杰, 周春宇, 杨叶, 等. 基于组独立成分分析方法的情绪刺激对脑部激活区域的研究[J]. 生物医学工程学进展, 2018, 39(3): 125–129. doi: 10.3969/j.issn.1674-1242.2018.03.001

    WU Jie, ZHOU Chunyu, YANG Ye, et al. Research on the brain activation region from emotion stimulation based on the group ICA method[J]. Progress in Biomedical Engineering, 2018, 39(3): 125–129. doi: 10.3969/j.issn.1674-1242.2018.03.001
    MAHYARI A G, ZOLTOWSKI D M, BERNAT E M, et al. A tensor decomposition-based approach for detecting dynamic network states from EEG[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(1): 225–237. doi: 10.1109/TBME.2016.2553960
    金广智, 石林锁, 崔智高, 等. 结合GLCM与三阶张量建模的在线目标跟踪[J]. 电子与信息学报, 2016, 38(7): 1609–1615. doi: 10.11999/JEIT151108

    JIN Guangzhi, SHI Linsuo, CUI Zhigao, et al. Online object tracking based on gray-level co-occurrence matrix and third-order tensor[J]. Journal of Electronics &Information Technology, 2016, 38(7): 1609–1615. doi: 10.11999/JEIT151108
    LIU Chuanwei, FU Yunfa, YANG Jun, et al. Discrimination of motor imagery patterns by electroencephalogram phase synchronization combined with frequency band energy[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(3): 551–557. doi: 10.1109/JAS.2016.7510121
    CHEN Yanyan, WANG Kuaini, and ZHONG Ping. One-class support tensor machine[J]. Knowledge-Based Systems, 2016, 96: 14–28. doi: 10.1016/j.knosys.2016.01.007
    DIAN Renwei, LI Shutao, and FANG Leyuan. Learning a low tensor-train rank representation for hyperspectral image super-resolution[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(9): 2672–2683. doi: 10.1109/TNNLS.2018.2885616
    CAI Deng, HE Xiaofei, WEN Jirong, et al. Support tensor machines for text categorization[R]. UIUCDCS-R-2006-2714, 2006: 2222–6990.
    CHEN Yuee and REN Baili. Research on large scale data set processing based on SVM[J]. Advanced Materials Research, 2011, 216: 738–741. doi: 10.4028/www.scientific.net/amr.216.738
    ZHOU Bingyin, SONG Biao, HASSAN M M, et al. Multilinear rank support tensor machine for crowd density estimation[J]. Engineering Applications of Artificial Intelligence, 2018, 72: 382–392. doi: 10.1016/j.engappai.2018.04.011
    CHEN Yanyan, LU Liyun, and ZHONG Ping. One-class support higher order tensor machine classifier[J]. Applied Intelligence, 2017, 47(4): 1022–1030. doi: 10.1007/s10489-017-0945-9
    LI Zhibao, DAI Yuhong, and GAO Huan. Alternating projection method for a class of tensor equations[J]. Journal of Computational and Applied Mathematics, 2019, 346: 490–504. doi: 10.1016/j.cam.2018.07.013
    冯翔, 陈志坤, 赵宜楠, 等. 基于联合优化松弛交替投影的组网雷达恒模波形设计[J]. 电子与信息学报, 2016, 38(7): 1745–1751. doi: 10.11999/JEIT151152

    FENG Xiang, CHEN Zhikun, ZHAO Yi’nan, et al. Unimodular waveforms design for netted radar system via joint optimization relaxed alternating projection[J]. Journal of Electronics &Information Technology, 2016, 38(7): 1745–1751. doi: 10.11999/JEIT151152
    SHI Haifa, ZHAO Xinbin, and JING Ling. Tensor distance based least square twin support tensor machine[J]. Applied Mechanics and Materials, 2014, 668. doi: 10.4028/www.scientific.net/amm.668-669.1170
    CYGANEK B and WOZNIAK M. Efficient computation of the tensor chordal kernels[J]. Procedia Computer Science, 2016, 80: 1702–1711. doi: 10.1016/j.procs.2016.05.511
    KOELSTRA S, MÜHL C, SOLEYMANI M, et al. DEAP: A database for emotion analysis; Using physiological signals[J]. IEEE Transactions on Affective Computing, 2012, 1(3): 18–31. doi: 10.1109/t-affc.2011.15
    赵少楷. 基于EEG脑网络特征的情绪识别研究[D]. [硕士论文], 杭州电子科技大学, 2018.

    ZHAO Shaokai. The research of emotion recognition based on features of brain networks[D]. [Master dissertation], Hangzhou Dianzi University, 2018.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  2540
  • HTML全文浏览量:  879
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-04
  • 修回日期:  2020-03-04
  • 网络出版日期:  2020-03-20
  • 刊出日期:  2020-10-13

目录

    /

    返回文章
    返回