高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分圆类构造卷积压缩感知测量矩阵

李玉博 张景景 韩承桓 彭秀平

李玉博, 张景景, 韩承桓, 彭秀平. 基于分圆类构造卷积压缩感知测量矩阵[J]. 电子与信息学报, 2021, 43(2): 419-425. doi: 10.11999/JEIT190878
引用本文: 李玉博, 张景景, 韩承桓, 彭秀平. 基于分圆类构造卷积压缩感知测量矩阵[J]. 电子与信息学报, 2021, 43(2): 419-425. doi: 10.11999/JEIT190878
Yubo LI, Jingjing ZHANG, Chenghuan HAN, Xiuping PENG. Construction of Convolution Compressed Sensing Measurement Matrices Based on Cyclotomic Classes[J]. Journal of Electronics & Information Technology, 2021, 43(2): 419-425. doi: 10.11999/JEIT190878
Citation: Yubo LI, Jingjing ZHANG, Chenghuan HAN, Xiuping PENG. Construction of Convolution Compressed Sensing Measurement Matrices Based on Cyclotomic Classes[J]. Journal of Electronics & Information Technology, 2021, 43(2): 419-425. doi: 10.11999/JEIT190878

基于分圆类构造卷积压缩感知测量矩阵

doi: 10.11999/JEIT190878
基金项目: 国家自然科学基金(61671402, 61501395),河北省自然科学基金(F2020203043),河北省高等学校青年拔尖人才计划基金(BJ2018018)
详细信息
    作者简介:

    李玉博:男,1985年生,副教授,硕士生导师,研究方向为压缩感知技术、序列设计与编码理论

    张景景:女,1995年生,硕士生,主要研究方向为压缩感知技术

    韩承桓:男,1995年生,硕士生,主要研究方向为压缩感知技术

    彭秀平:女,1984年生,副教授,硕士生导师,研究方向为编码理论、信号设计

    通讯作者:

    李玉博 liyubo6316@ysu.edu.cn

  • 中图分类号: TN911.7

Construction of Convolution Compressed Sensing Measurement Matrices Based on Cyclotomic Classes

Funds: The National Natural Science Foundation of China (61671402, 61501395), The Natural Science Foundation of Hebei Province (F2020203043), The Fundation of Top Young Talents Program in Colleges and Universities of Hebei Province (BJ2018018)
  • 摘要:

    卷积压缩感知是近年来兴起的新型压缩感知技术。卷积压缩感知选用循环矩阵作为测量矩阵,其采样可以简化为卷积的过程,因此大大降低算法复杂度。该文基于分圆类构造适用于卷积压缩感知的测量矩阵,测量值通过利用确定性序列循环卷积信号,然后进行随机2次采样获得。该文构造的测量矩阵的相关性小于已有文献构造的测量矩阵的相关性。模拟仿真结果表明,该文构造的测量矩阵与同等条件下的随机高斯矩阵相比,可以更好地恢复稀疏信号;所构造的矩阵还可以应用于信道估计以及2维图像的重构。

  • 图  1  相关性分布图

    图  2  不同稀疏度下的重构百分比

    图  3  不同稀疏度下的重构百分比

    图  4  不同稀疏度下的输出信噪比

    图  5  不同稀疏度下的输出信噪比

    图  6  不同测量矩阵重构2维图像

    图  7  信道脉冲响应的实值及其估计

    图  8  均方误差性能与组合多路径数

    表  1  与已有序列构造的矩阵相关性比较

    对角向量$\sigma $序列长度$N$相关性参数$\mu ({{A}})$
    文献[10]抽样Sidelnikov序列$N = \dfrac{ { {p^m} - 1} }{c}$, $c$为偶数$\sqrt {c + {{\rm{1}} / N}} + {1 / {\sqrt N }}$, $N$为偶数
    $\sqrt {c + {1 / N}} $, $N$为奇数
    文献[11]Extended Frank-Zadoff-Chu(扩展FZC)序列$N$为偶数$4 + {4 / {\sqrt N }}$
    $N$为奇数$2.69 + {{8.15} / {\sqrt N }}$
    Extended Golay(扩展Golay)序列$N = {2^{{k_1}}}{10^{{k_2}}}{26^{{k_3}}}$, $N$为偶数,${k_1},{k_2},{k_3}$为整数$2 + {2 / {\sqrt N }}$
    $N = {2^{{k_1}}}{10^{{k_2}}}{26^{{k_3}}} \pm 1$, $N$为奇数,${k_1},{k_2},{k_3}$为整数$2 + {1 / {\sqrt N }}$
    本文由2阶分圆类得到的序列$N = p$为奇素数,$p \equiv 1({\rm{mod}}4)$$1 + {1 / {\sqrt N }}$
    由$e > 2$阶分圆类得到的序列$N = p$为奇素数$\mu ({{A} }) \le 2$
    下载: 导出CSV
  • DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    DONOHO D L and ELAD M. Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(5): 2197–2202. doi: 10.1073/pnas.0437847100
    范剑英, 马明阳, 赵首博. 基于压缩感知高反光成像技术研究[J]. 电子与信息学报, 2020, 42(4): 1013–1020. doi: 10.11999/JEIT190512

    FAN Jianying, MA Mingyang, and ZHAO Shoubo. Research on high reflective imaging technology based on compressed sensing[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1013–1020. doi: 10.11999/JEIT190512
    李玮, 邓维波, 杨强, 等. 基于确定性压缩感知采样策略的阵列失效单元远场诊断方法[J]. 电子与信息学报, 2018, 40(11): 2541–2546. doi: 10.11999/JEIT180175

    LI Wei, DENG Weibo, YANG Qiang, et al. Far-field diagnosis method of array failure cells based on deterministic compressed sensing sampling strategy[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2541–2546. doi: 10.11999/JEIT180175
    LI Yubo, XUAN Hongqian, JIA Dongyan, et al. A construction of sparse deterministic measurement matrices[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2019, E102. A(11): 1575–1579. doi: 10.1587/transfun.e102.a.1575
    NOUASRIA H and ET-TOLBA M. Sensing matrix based on Kasami codes for compressive sensing[J]. IET Signal Processing, 2018, 12(8): 1064–1072. doi: 10.1049/iet-spr.2017.0537
    GU Zhi, ZHOU Zhengchun, YANG Yang, et al. Deterministic compressed sensing matrices from sequences with optimal correlation[J]. IEEE Access, 2019, 7: 16704–16710. doi: 10.1109/ACCESS.2019.2896006
    LIU Haiqiang, YIN Jihang, HUA Gang, et al. Deterministic construction of measurement matrices based on Bose balanced incomplete block designs[J]. IEEE Access, 2018, 6: 21710–21718. doi: 10.1109/ACCESS.2018.2824329
    CUI Xiang. Construction of deterministic measurements matrix using decimated Legendre sequences[J]. MATEC Web of Conferences, 2015, 22: 01047. doi: 10.1051/matecconf/20152201047
    YU N Y and GAN Lu. Convolutional compressed sensing using decimated sidelnikov sequences[J]. IEEE Signal Processing Letters, 2014, 21(5): 591–594. doi: 10.1109/LSP.2014.2311659
    LI Kezhi, GAN Lu, and LING Cong. Convolutional compressed sensing using deterministic sequences[J]. IEEE Transactions on Signal Processing, 2013, 61(3): 740–752. doi: 10.1109/TSP.2012.2229994
    TROPP J A. Random filters for compressive sampling[C]. The 2006 40th Annual Conference on Information Sciences and Systems, Princeton, USA, 2006: 216–217. doi: 10.1109/CISS.2006.286465.
    BAJWA W U, HAUPT J D, RAZ G M, et al. Toeplitz-structured compressed sensing matrices[C]. 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, Madison, USA, 2007: 294–298. doi: 10.1109/SSP.2007.4301266.
    ROMBERG J. Compressive sensing by random convolution[J]. SIAM Journal on Imaging Sciences, 2009, 2(4): 1098–1128. doi: 10.1137/08072975X
    CANDÈS E J, ROMBERG J K, and TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207–1223. doi: 10.1002/cpa.20124
    BOURGAIN J, DILWORTH S J, FORD K, et al. Explicit constructions of RIP matrices and related problems[J]. Duke Mathematical Journal, 2011, 159(1): 145–185. doi: 10.1215/00127094-1384809
    申颖. 基于分圆类和广义分圆类的几乎差集偶构造方法研究[D]. [硕士论文], 燕山大学, 2016: 1–62.

    SHEN Ying. The constructions of almost difference set pairs based on cyclotomy and generalized cyclotomy[D]. [Master dissertation], Yanshan University, 2016: 1–62.
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108
    YANG Junfeng, ZHANG Yin, and YIN Wotao. A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 288–297. doi: 10.1109/JSTSP.2010.2042333
    HALE E T, YIN W, and ZHANG Yin. Fixed-point continuation for 1-minimization: Methodology and convergence[J]. SIAM Journal on Optimization, 2008, 19(3): 1107–1130. doi: 10.1137/070698920
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1188
  • HTML全文浏览量:  479
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-04
  • 修回日期:  2020-07-15
  • 网络出版日期:  2020-12-09
  • 刊出日期:  2021-02-23

目录

    /

    返回文章
    返回