高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类三次多项式混沌映射的判定及性能分析

臧鸿雁 韦心元 袁悦

臧鸿雁, 韦心元, 袁悦. 一类三次多项式混沌映射的判定及性能分析[J]. 电子与信息学报, 2021, 43(2): 454-460. doi: 10.11999/JEIT190875
引用本文: 臧鸿雁, 韦心元, 袁悦. 一类三次多项式混沌映射的判定及性能分析[J]. 电子与信息学报, 2021, 43(2): 454-460. doi: 10.11999/JEIT190875
Hongyan ZANG, Xinyuan WEI, Yue YUAN. Determination and Properties Analysis of a Cubic Polynomial Chaotic Map[J]. Journal of Electronics & Information Technology, 2021, 43(2): 454-460. doi: 10.11999/JEIT190875
Citation: Hongyan ZANG, Xinyuan WEI, Yue YUAN. Determination and Properties Analysis of a Cubic Polynomial Chaotic Map[J]. Journal of Electronics & Information Technology, 2021, 43(2): 454-460. doi: 10.11999/JEIT190875

一类三次多项式混沌映射的判定及性能分析

doi: 10.11999/JEIT190875
基金项目: 中央高校基本科研业务费专项资金(06108236)
详细信息
    作者简介:

    臧鸿雁:女,1973年生,副教授,研究方向为非线性系统同步理论与混沌密码学

    韦心元:男,1994年生,硕士生,研究方向为混沌系统理论与混沌密码学

    袁悦:女,1996年生,硕士生,研究方向为混沌系统理论与混沌密码学

    通讯作者:

    臧鸿雁 zhylixiang@126.com

  • 中图分类号: TN918.1

Determination and Properties Analysis of a Cubic Polynomial Chaotic Map

Funds: The Fundamental Research Funds for the Central Universities of Ministry of Education of China (06108236)
  • 摘要:

    该文给出了一般3次多项式映射与分段线性混沌映射拓扑共轭的充分条件,从而间接地给出了一般3次多项式成为混沌系统的充分条件。进一步对拓扑共轭的分段线性映射和多项式映射的均匀性、结构复杂性和随机性进行了分析,结果显示分段线性映射的均匀性优于多项式映射,多项式映射的随机性优于分段线性映射,在结构复杂性方面,二者没有显著差异,但量化方法对二者的结构复杂性影响显著。

  • 图  1  映射${T_3}$拟合图

    图  2  系统(10)的分岔图和Lyapunov指数

    图  3  映射${T_3}$和系统式(10)的信息熵

    图  4  不同系统的伪随机序列的SE复杂度

    图  5  不同量化方法下,不同系统的伪随机序列的SE复杂度

    表  1  NIST SP800-22检测结果

    序号测试项基于系统式(10)的PRNG基于系统式(2)的PRNG
    通过率${\rm{UP}}$值结果通过率${\rm{UP}}$值结果
    1频率0.99200.401199通过0.98800.890582通过
    2块内频率0.98800.275709通过0.6940<10–4失败
    3累积和1)0.99300.157251通过0.98600.358641通过
    4游程0.99000.010834通过0.98500.741918通过
    5块内最长游程0.98700.818343通过0.0040<10–4失败
    6二元矩阵秩0.98700.378705通过0.98800.520102通过
    7离散傅里叶变换0.98300.067300通过0.8490<10–4失败
    8非重叠模块匹配1)0.98100.759756通过0.2950<10–4失败
    9重叠模块统计0.98500.597620通过0.0600<10–4失败
    10全局通用统计0.99400.289667通过0.9910<10–4失败
    11近似熵0.99300.133404通过0.0000<10–4失败
    12随机偏移1)0.98750.482338通过0.98060.083979通过
    13随机偏移变量1)0.98600.196836通过0.98380.592833通过
    14序列1)0.98400.775337通过0.0000<10–4失败
    15线性复杂度0.99000.572847通过0.99100.811080通过
    测试项1):该测试项包含几个子模块,此处列出了其中最差的结果。
    黑体表示通过率或${\rm{UP}}$值不在接受范围内,即未通过检测。
    下载: 导出CSV
  • LI T Y and YORKE J A. Period three implies chaos[J]. The American Mathematical Monthly, 1975, 82(10): 985–992. doi: 10.2307/2318254
    YANG Xiuping, MIN Lequan, and WANG Xue. A cubic map chaos criterion theorem with applications in generalized synchronization based pseudorandom number generator and image encryption[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2015, 25(5): 053104. doi: 10.1063/1.4917380
    王传福, 丁群. 基于混沌系统的SM4密钥扩展算法[J]. 物理学报, 2017, 66(2): 020504. doi: 10.7498/aps.66.020504

    WANG Chuanfu and DING Qun. SM4 key scheme algorithm based on chaotic system[J]. Acta Physica Sinica, 2017, 66(2): 020504. doi: 10.7498/aps.66.020504
    LIN Zhuosheng, YU Simin, FENG Xiutao, et al. Cryptanalysis of a chaotic stream cipher and its improved scheme[J]. International Journal of Bifurcation and Chaos, 2018, 28(7): 1850086. doi: 10.1142/S0218127418500864
    XU Zhengguang, TIAN Qing, and TIAN Li. Theorem to generate independently and uniformly distributed chaotic key stream via topologically conjugated maps of tent map[J]. Mathematical Problems in Engineering, 2012, 2012: 619257. doi: 10.1155/2012/619257
    DASTGHEIB M A and FARHANG M. A digital pseudo-random number generator based on sawtooth chaotic map with a guaranteed enhanced period[J]. Nonlinear Dynamics, 2017, 89(4): 2957–2966. doi: 10.1007/s11071-017-3638-3
    梁涤青, 陈志刚, 邓小鸿. 基于小波包能量熵的混沌序列复杂度分析[J]. 电子学报, 2015, 43(10): 1971–1977. doi: 10.3969/j.issn.0372-2112.2015.10.014

    LIANG Diqing, CHEN Zhigang, and DENG Xiaohong. Analysis of chaotic sequence complexity based on wavelet packet energy entropy[J]. Acta Electronica Sinica, 2015, 43(10): 1971–1977. doi: 10.3969/j.issn.0372-2112.2015.10.014
    MURILLO-ESCOBAR M A, CRUZ-HERNÁNDEZ C, CARDOZA-AVENDAÑO L, et al. A novel pseudorandom number generator based on pseudorandomly enhanced logistic map[J]. Nonlinear Dynamics, 2017, 87: 407–425. doi: 10.1007/s11071-016-3051-3
    臧鸿雁, 黄慧芳, 柴宏玉. 一类2次多项式混沌系统的均匀化方法研究[J]. 电子与信息学报, 2019, 41(7): 1618–1624. doi: 10.11999/JEIT180735

    ZANG Hongyan, HUANG Huifang, and CHAI Hongyu. Homogenization method for the quadratic polynomial chaotic system[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1618–1624. doi: 10.11999/JEIT180735
    臧鸿雁, 柴宏玉. 一个二次多项式混沌系统的均匀化及其熵分析[J]. 物理学报, 2016, 65(3): 030504. doi: 10.7498/aps.65.030504

    ZANG Hongyan and CHAI Hongyu. Homogenization and entropy analysis of a quadratic polynomial chaotic system[J]. Acta Physica Sinica, 2016, 65(3): 030504. doi: 10.7498/aps.65.030504
    徐正光, 田清, 田立. 一类可以产生独立同分布密钥流的混沌系统[J]. 物理学报, 2013, 62(13): 120501. doi: 10.7498/aps.62.120501

    XU Zhengguang, TIAN Qing, and TIAN Li. A class of topologically conjugated chaotic maps of tent map to generate independently and uniformly distributed chaotic key stream[J]. Acta Physica Sinica, 2013, 62(13): 120501. doi: 10.7498/aps.62.120501
    LIU Lingfeng, MIAO Suoxia, HU Hanping, et al. N-phase logistic chaotic sequence and its application for image encryption[J]. IET Signal Processing, 2016, 10(9): 1096–1104. doi: 10.1049/iet-spr.2015.0522
    TONG Xiaojun, CUI Minggen, and WANG Zhu. A new feedback image encryption scheme based on perturbation with dynamical compound chaotic sequence cipher generator[J]. Optics Communications, 2009, 282(14): 2722–2728. doi: 10.1016/j.optcom.2009.03.075
    TONG Xiaojun, ZHANG Miao, WANG Zhu, et al. A image encryption scheme based on dynamical perturbation and linear feedback shift register[J]. Nonlinear Dynamics, 2014, 78(3): 2277–2291. doi: 10.1007/s11071-014-1564-1
    HAO Bolin. Starting with Parabola: An Introduction to Chaotic Dynamics[M]. 2nd ed. Beijing: Peking University Press, 2013: 114–118.
    孙克辉, 贺少波, 何毅, 等. 混沌伪随机序列的谱熵复杂性分析[J]. 物理学报, 2013, 62(1): 010501. doi: 10.7498/aps.62.010501

    SUN Kehui, HE Shaobo, HE Yi, et al. Complexity analysis of chaotic pseudo-random sequences based on spectral entropy algorithm[J]. Acta Physica Sinica, 2013, 62(1): 010501. doi: 10.7498/aps.62.010501
    RUKHIN A, SOTO J, NECHVATAL J, et al. Special Publication 800-22 A statistical test suite for random and pseudorandom number generators for cryptographic applications[S]. U. S. Department of Commerce: National Institute of Standards and Technology, 2010.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  850
  • HTML全文浏览量:  413
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-04
  • 修回日期:  2020-03-12
  • 网络出版日期:  2020-12-11
  • 刊出日期:  2021-02-23

目录

    /

    返回文章
    返回