高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

忆阻数字逻辑电路设计

王晓媛 金晨曦 周鹏飞

王晓媛, 金晨曦, 周鹏飞. 忆阻数字逻辑电路设计[J]. 电子与信息学报, 2020, 42(4): 851-861. doi: 10.11999/JEIT190864
引用本文: 王晓媛, 金晨曦, 周鹏飞. 忆阻数字逻辑电路设计[J]. 电子与信息学报, 2020, 42(4): 851-861. doi: 10.11999/JEIT190864
Xiaoyuan WANG, Chenxi JIN, Pengfei ZHOU. Memristive Digital Logic Circuit Design[J]. Journal of Electronics & Information Technology, 2020, 42(4): 851-861. doi: 10.11999/JEIT190864
Citation: Xiaoyuan WANG, Chenxi JIN, Pengfei ZHOU. Memristive Digital Logic Circuit Design[J]. Journal of Electronics & Information Technology, 2020, 42(4): 851-861. doi: 10.11999/JEIT190864

忆阻数字逻辑电路设计

doi: 10.11999/JEIT190864
基金项目: 国家自然科学基金(61871429),浙江省自然科学基金(LY18F010012)
详细信息
    作者简介:

    王晓媛:女,1981年生,副教授,研究方向为新型记忆元件(忆阻器、忆容器和忆感器)理论及应用,非线性电路系统设计和信息加密算法研究

    金晨曦:男,1996年生,硕士,研究方向为忆阻器、忆阻数字逻辑电路

    周鹏飞:男,1996年生,硕士,研究方向为忆阻器、忆阻数字逻辑电路

    通讯作者:

    王晓媛 youyuan-0213@163.com

  • 中图分类号: TN601; TN791

Memristive Digital Logic Circuit Design

Funds: The National Natural Science Foundation of China (61871429), The Natural Science Foundation of Zhejiang Province (LY18F010012)
  • 摘要: 该文简要概述了忆阻器理论的提出、应用现状及其在电子技术领域发展的现状,介绍了忆阻器在数字逻辑电路设计中的重要意义,并结合惠普(HP)忆阻器的二值特性及其电路特性,对忆阻器在数字逻辑电路设计中的发展、趋势及可应用前景进行了综述,可为忆阻器在数字逻辑电路中的后续研究及相关应用提供一定的参考。
  • 图  1  HP忆阻器阻值变化机制

    图  2  HP忆阻器v-i特性曲线

    图  3  忆阻实质蕴涵逻辑

    图  4  使用实质蕴涵逻辑完成“或”运算

    图  5  2输入MRL逻辑门电路结构

    图  6  2输入MAGIC逻辑门电路结构

    图  7  3输入阈值门电路图

    图  8  忆阻LTG门电路结构

    图  9  通用布尔逻辑门集的类CMOS纳米级电路设计

    图  10  类CMOS忆阻互补逻辑实现组合逻辑

    图  11  2输入“与非”门类CMOS电路

    图  12  2输入布尔逻辑门及其运算电路结构

  • CHUA L. Memristor-The missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. doi: 10.1109/TCT.1971.1083337
    STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2009, 453(7191): 80–83. doi: 10.1038/nature06932
    PAL S, GUPTA V, KI W, et al. Design and development of memristor-based RRAM[J]. IET Circuits, Devices & Systems, 2019, 13(4): 548–557. doi: 10.1049/iet-cds.2018.5388
    ZHANG Mengsi and WANG Dongshu. Robust dissipativity analysis for delayed memristor-based inertial neural network[J]. Neurocomputing, 2019, 366: 340–351. doi: 10.1016/j.neucom.2019.08.004
    XIE Lei, CAI Hao, WANG Chao, et al. Towards an automated design flow for memristor based VLSI circuits[J]. Integration, 2020, 70: 21–31. doi: 10.1016/j.vlsi.2019.09.009
    MIN Xiaotao, WANG Xiaoyuan, ZHOU Pengfei, et al. An optimized memristor-based hyperchaotic system with controlled hidden attractors[J]. IEEE Access, 2019, 7: 124641–124646. doi: 10.1109/ACCESS.2019.2938183
    LASTRAS-MONTAÑO M A and CHENG K. Resistive random-access memory based on ratioed memristors[J]. Nature Electronics, 2018, 1(8): 466–472. doi: 10.1038/s41928-018-0115-z
    PAL S, BOSE S, KI W H, et al. Design of power- and variability-aware nonvolatile RRAM cell using memristor as a memory element[J]. IEEE Journal of the Electron Devices Society, 2019, 7: 701–709. doi: 10.1109/JEDS.2019.2928830
    SHARIF K F and BISWAS S N. 6 Transistors and 1 memristor based memory cell[J]. International Journal of Reconfigurable and Embedded Systems, 2020, 9(1): 42–51. doi: 10.11591/ijres.v9.i1.pp42-51
    BISWAS B R and HARUN-UR-RASHID A B M. A data erasing writing technique based 1t1m quaternary memory circuit design[C]. The 10th International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh, 2018: 317–320. doi: 10.1109/ICECE.2018.8636774.
    SAH M P, KIM H, and CHUA L O. Brains are made of memristors[J]. IEEE Circuits and Systems Magazine, 2014, 14(1): 12–36. doi: 10.1109/MCAS.2013.2296414
    LINN E, ROSEZIN R, TAPPERTZHOFEN S, et al. Beyond von Neumann-logic operations in passive crossbar arrays alongside memory operations[J]. Nanotechnology, 2012, 23(30): 305205. doi: 10.1088/0957-4484/23/30/305205
    GHOSE S, BOROUMAND A, KIM J S, et al. Processing-in-memory: A workload-driven perspective[J]. IBM Journal of Research and Development, 2019, 63(6): 3: 1-3: 19. doi: 10.1147/JRD.2019.2934048.
    WHITEHEAD A N and RUSSELL B. Principia Mathematica[M]. Cambridge: Cambridge University Press, 1912.
    KUEKES P. Material implication: Digital logic with memristors[C]. The Memristor and Memristive Systems Symposium, Berkeley, USA, 2008.
    BORGHETTI J, SNIDER G S, KUEKES P J, et al. ‘Memristive’ switches enable ‘Stateful’ logic operations via material implication[J]. Nature, 2010, 464(7290): 873–876. doi: 10.1038/nature08940
    LEHTONEN E, POIKONEN J, and LAIHO M. Implication logic synthesis methods for memristors[C]. 2012 IEEE International Symposium on Circuits and Systems, Seoul, South Korea, 2012: 2441–2444. doi: 10.1109/ISCAS.2012.6271792.
    LEHTONEN E, TISSARI J, POIKONEN J, et al. A cellular computing architecture for parallel memristive stateful logic[J]. Microelectronics Journal, 2014, 45(11): 1438–1449. doi: 10.1016/j.mejo.2014.09.005
    MANE P, TALATI N, RISWADKAR A, et al. Implementation of NOR logic based on material implication on CMOL FPGA architecture[C]. The 28th International Conference on VLSI Design, Bangalore, India, 2015: 523–528. doi: 10.1109/VLSID.2015.94.
    YANG Yuanfan, MATHEW J, PONTARELLI S, et al. Complementary resistive switch-based arithmetic logic implementations using material implication[J]. IEEE Transactions on Nanotechnology, 2016, 15(1): 94–108. doi: 10.1109/TNANO.2015.2504841
    CHEN Qiao, WANG Xiaoping, WAN Haibo, et al. A logic circuit design for perfecting memristor-based material implication[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, 36(2): 279–284. doi: 10.1109/TCAD.2016.2578881
    MANE P, TALATI N, RISWADKAR A, et al. Reconfiguration on nanocrossbar using material implication[J]. Sādhanā, 2017, 42(1): 33–44. doi: 10.1007/s12046-016-0582-8
    GUCKERT L and SWARTZLANDER E E. MAD gates-memristor logic design using driver circuitry[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64(2): 171–175. doi: 10.1109/TCSII.2016.2551554
    GUCKERT L and SWARTZLANDER E E. Optimized memristor-based multipliers[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64(2): 373–385. doi: 10.1109/TCSI.2016.2606433
    REVANNA N and SWARTZLANDER E E. Memristor based high fan-out logic gates[C]. 2016 IEEE Dallas Circuits and Systems Conference, Arlington, USA, 2016: 1–4. doi: 10.1109/DCAS.2016.7791136.
    MARRANGHELLO F S, CALLEGARO V, MARTINS M G A, et al. Improved logic synthesis for memristive stateful logic using multi-memristor implication[C]. 2015 IEEE International Symposium on Circuits and Systems, Lisbon, Portugal, 2015: 181–184. doi: 10.1109/ISCAS.2015.7168600.
    MARRANGHELLO F S, CALLEGARO V, MARTINS M G A, et al. Factored forms for memristive material implication stateful logic[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2015, 5(2): 267–278. doi: 10.1109/JETCAS.2015.2426511
    MARRANGHELLO F S, CALLEGARO V, REIS A I, et al. SOP based logic synthesis for memristive IMPLY stateful logic[C]. The 33rd IEEE International Conference on Computer Design, New York, USA, 2015: 228–235. doi: 10.1109/ICCD.2015.7357108.
    LALCHHANDAMA F, SAPUI B G, and DATTA K. An improved approach for the synthesis of Boolean functions using memristor based IMPLY and INVERSE-IMPLY gates[C]. 2016 IEEE Computer Society Annual Symposium on VLSI, Pittsburgh, USA, 2016: 319–324. doi: 10.1109/ISVLSI.2016.61.
    WANG Xiaoxiao, TAN R, and PERKOWSKI M. Synthesis of memristive circuits based on stateful IMPLY gates using an evolutionary algorithm with a correction function[C]. 2016 IEEE/ACM International Symposium on Nanoscale Architectures, Beijing, China, 2016: 97–102. doi: 10.1145/2950067.2950087.
    MARRANGHELLO F S, CALLEGARO V, REIS A I, et al. Four-level forms for memristive material implication logic[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27(5): 1228–1232. doi: 10.1109/TVLSI.2019.2890843
    KVATINSKY S, SATAT G, WALD N, et al. Memristor-based material implication (IMPLY) logic: Design principles and methodologies[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014, 22(10): 2054–2066. doi: 10.1109/TVLSI.2013.2282132
    TEIMOORY M, AMIRSOLEIMANI A, AHMADI A, et al. Memristor-based linear feedback shift register based on material implication logic[C]. 2015 European Conference on Circuit Theory and Design, Trondheim, Norway, 2015: 1–4. doi: 10.1109/ECCTD.2015.7300100.
    CHAKRABORTY A and RAHAMAN H. Implementation of combinational circuits via material implication using memristors[C]. 2016 IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics, Mangalore, India, 2016: 67–72. doi: 10.1109/DISCOVER.2016.7806227.
    CHAKRABORTY A, DHARA A, and RAHAMAN H. Design of memristor-based up-down counter using material implication logic[C]. 2016 International Conference on Advances in Computing, Communications and Informatics, Jaipur, India, 2016: 269–274. doi: 10.1109/ICACCI.2016.7732058.
    REVANNA N and SWARTZLANDER E E. Memristor based adder circuit design[C]. The 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2016: 162–166. doi: 10.1109/ACSSC.2016.7869016.
    BANERJEE A, PAL S, BHATTACHARYYA S, et al. Memristor based modulo multiplier design for (2n – 1) and 2n radix[C]. 2017 Devices for Integrated Circuit, Kalyani, India, 2017: 20–24. doi: 10.1109/DEVIC.2017.8073898.
    HAGHIRI S, NEMATI A, FEIZI S, et al. A memristor based binary multiplier[C]. The 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering, Windsor, Canada, 2017: 1–4. doi: 10.1109/CCECE.2017.7946783.
    ROHANI S G and TAHERINEJAD N. An improved algorithm for IMPLY logic based memristive full-adder[C]. The 30th IEEE Canadian Conference on Electrical and Computer Engineering, Windsor, Canada, 2017: 1–4. doi: 10.1109/CCECE.2017.7946813.
    HARON A, MAHDZAIR F, LUQMAN A, et al. Implementation of digital equality comparator circuit on memristive memory crossbar array using material implication logic[J]. IOP Conference Series: Materials Science and Engineering, 2018, 341(1): 012025. doi: 10.1088/1757-899X/341/1/012025
    LI Mengting, SUN Wenhao, LU Zhimin, et al. Memristor-based material implication logic design for full adders[C]. The 12th IEEE International Conference on ASIC, Guiyang, China, 2017: 271–274. doi: 10.1109/ASICON.2017.8252465.
    WANG Xiaoping, WU Qian, CHEN Qiao, et al. A novel design for Memristor-based multiplexer via NOT-material implication[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(7): 1436–1444. doi: 10.1109/TCAD.2017.2753204
    KARIMI A and REZAI A. Novel design for a memristor-based full adder using a new IMPLY logic approach[J]. Journal of Computational Electronics, 2018, 17(3): 1303–1314. doi: 10.1007/s10825-018-1198-5
    KARIMI A and REZAI A. Novel design for Memristor-based n to 1 multiplexer using new IMPLY logic approach[J]. IET Circuits, Devices & Systems, 2019, 13(5): 647–655. doi: 10.1049/iet-cds.2018.5090
    KVATINSKY S, WALD N, SATAT G, et al. MRL-Memristor ratioed logic[C]. The 13th International Workshop on Cellular Nanoscale Networks and their Applications, Turin, Italy, 2012: 1–6. doi: 10.1109/CNNA.2012.6331426.
    TEIMOORI M, AHMADI A, ALIREZAEE S, et al. A novel hybrid CMOS-memristor logic circuit using Memristor Ratioed Logic[C]. 2016 IEEE Canadian Conference on Electrical and Computer Engineering, Vancouver, Canada, 2016: 1–4. doi: 10.1109/CCECE.2016.7726661.
    TEIMOORY M, AMIRSOLEIMANI A, AHMADI A, et al. A hybrid memristor-CMOS multiplier design based on memristive universal logic gates[C]. The 60th IEEE International Midwest Symposium on Circuits and Systems, Boston, USA, 2017: 1422–1425. doi: 10.1109/MWSCAS.2017.8053199.
    XU Xiaoyan, CUI Xiaole, LUO Mengying, et al. Design of hybrid memristor-MOS XOR and XNOR logic gates[C]. 2017 International Conference on Electron Devices and Solid-State Circuits, Hsinchu, China, 2017: 1–2. doi: 10.1109/EDSSC.2017.8126414.
    LIU Bosheng, WANG Ying, YOU Zhiqiang, et al. A signal degradation reduction method for memristor ratioed logic (MRL) gates[J]. IEICE Electronics Express, 2015, 12(8): 20150062. doi: 10.1587/elex.12.20150062
    MIRZAIE N, ALZAHMI A, SHAMSI H, et al. Three-dimensional pipeline ADC utilizing TSV/design optimization and memristor ratioed logic[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(12): 2619–2627. doi: 10.1109/TVLSI.2018.2810782
    LIU Gongzhi, ZHENG Lijing, WANG Guangyi, et al. A carry lookahead adder based on hybrid CMOS-memristor logic circuit[J]. IEEE Access, 2019, 7: 43691–43696. doi: 10.1109/ACCESS.2019.2907976
    KVATINSKY S, BELOUSOV D, LIMAN S, et al. MAGIC-Memristor-aided logic[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61(11): 895–899. doi: 10.1109/TCSII.2014.2357292
    TALATI N, GUPTA S, MANE P, et al. Logic design within memristive memories using memristor-aided loGIC (MAGIC)[J]. IEEE Transactions on Nanotechnology, 2016, 15(4): 635–650. doi: 10.1109/TNANO.2016.2570248
    HUR R B and KVATINSKY S. Memory processing unit for in-memory processing[C]. 2016 IEEE/ACM International Symposium on Nanoscale Architectures, Beijing, China, 2016: 171–172. doi: 10.1145/2950067.2950086.
    THANGKHIEW P L, GHARPINDE R, YADAV D N, et al. Efficient implementation of adder circuits in memristive crossbar array[C]. TENCON 2017-2017 IEEE Region 10 Conference, Penang, Malaysia, 2017: 207–212. doi: 10.1109/TENCON.2017.8227863.
    HUR R B, WALD N, TALATI N, et al. SIMPLE MAGIC: Synthesis and in-memory mapping of logic execution for memristor-aided logic[C]. 2017 IEEE/ACM International Conference on Computer-Aided Design, Irvine, USA, 2017: 225–232.
    HAJ-ALI A, BEN-HUR R, WALD N, et al. Efficient algorithms for in-memory fixed point multiplication using magic[C]. 2018 IEEE International Symposium on Circuits and Systems, Florence, Italy, 2018: 1–5. doi: 10.1109/ISCAS.2018.8351561.
    THANGKHIEW P L, GHARPINDE R, CHOWDHARY P V, et al. Area efficient implementation of ripple carry adder using memristor crossbar arrays[C]. The 11th International Design & Test Symposium, Hammamet, Tunisia, 2016: 142–147. doi: 10.1109/IDT.2016.7843030.
    THANGKHIEW P L and DATTA K. Scalable in-memory mapping of boolean functions in memristive crossbar array using simulated annealing[J]. Journal of Systems Architecture, 2018, 89: 49–59. doi: 10.1016/j.sysarc.2018.07.002
    THANGKHIEW P L, GHARPINDE R, and DATTA K. Efficient mapping of Boolean functions to memristor crossbar using MAGIC NOR gates[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(8): 2466–2476. doi: 10.1109/TCSI.2018.2792474
    THANGKHIEW P L and DATTA K. Fast in-memory computation of Boolean functions in memristive crossbar array[C]. The 8th International Symposium on Embedded Computing and System Design, Cochin, India, 2018: 105–109. doi: 10.1109/ISED.2018.8703986.
    WALD N and KVATINSKY S. Understanding the influence of device, circuit and environmental variations on real processing in memristive memory using Memristor Aided Logic[J]. Microelectronics Journal, 2019, 86: 22–33. doi: 10.1016/j.mejo.2019.02.013
    CHAKRABORTY A, SAURABH V, GUPTA P S, et al. In-memory designing of Delay and Toggle flip-flops utilizing Memristor Aided loGIC (MAGIC)[J]. Integration, 2019, 66: 24–34. doi: 10.1016/j.vlsi.2018.12.005
    CHEN Lin, HE Zhong, WANG Xiaoping, et al. Several logic gates extended from magic-memristor-aided logic[C]. The 14th International Symposium on Neural Networks, Hokkaido, Japan, 2017: 170–179. doi: 10.1007/978-3-319-59072-1_21.
    G N M, LALCHHANDAMA F, DATTA K, et al. Modelling and simulation of non-ideal MAGIC NOR Gates on memristor crossbar[C]. The 8th International Symposium on Embedded Computing and System Design, Cochin, India, 2018: 124–128. doi: 10.1109/ISED.2018.8704015.
    WANG Xiaoping, YANG Yuanyuan, CHEN Lin, et al. A non-volatile comparator based on 1T1M crossbar arrays using memristor-aided logic[C]. The IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 2017: 5685–5689. doi: 10.1109/IECON.2017.8216986.
    BEIU V, QUINTANA J M, and AVEDILLO M J. VLSI implementations of threshold logic-a comprehensive survey[J]. IEEE Transactions on Neural Networks, 2003, 14(5): 1217–1243. doi: 10.1109/TNN.2003.816365
    RAJENDRAN J, MANEM H, KARRI R, et al. Memristor based programmable threshold logic array[C]. 2010 IEEE/ACM International Symposium on Nanoscale Architectures, Anaheim, USA, 2010: 5–10. doi: 10.1109/NANOARCH.2010.5510933.
    GAO Ligang, ALIBART F, and STRUKOV D B. Programmable CMOS/memristor threshold logic[J]. IEEE Transactions on Nanotechnology, 2013, 12(2): 115–119. doi: 10.1109/TNANO.2013.2241075
    XIE Lei. Hybrid threshold-Boolean logic mapped on memristor crossbar[C]. The 12th Conference on Ph.D. Research in Microelectronics and Electronics, Lisbon, Portugal, 2016: 1–4. doi: 10.1109/PRIME.2016.7519462.
    JAMES A P, KUMAR D S, and AJAYAN A. Threshold logic computing: Memristive-cmos circuits for fast fourier transform and vedic multiplication[J]. IEEE Transactions on Very Large scale Integration (VLSI) Systems, 2015, 23(11): 2690–2694. doi: 10.1109/TVLSI.2014.2371857
    MAAN A K and JAMES A P. Voltage controlled memristor threshold logic gates[C]. 2016 IEEE Asia Pacific Conference on Circuits and Systems, Jeju, South Korea, 2016: 376–379. doi: 10.1109/APCCAS.2016.7803980.
    MAAN A K, JAYADEVI D A, and JAMES A P. A survey of memristive threshold logic circuits[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(8): 1734–1746. doi: 10.1109/TNNLS.2016.2547842
    PAPANDROULIDAKIS G, KHIAT A, SERB A, et al. Metal oxide-enabled reconfigurable memristive threshold logic gates[C]. 2018 IEEE International Symposium on Circuits and Systems, Florence, Italy, 2018: 1–5. doi: 10.1109/ISCAS.2018.8351192.
    MOZAFFARI S N and TRAGOUDAS S. Maximizing the number of threshold logic functions using resistive memory[J]. IEEE Transactions on Nanotechnology, 2018, 17(5): 897–905. doi: 10.1109/TNANO.2018.2822285
    PAPANDROULIDAKIS G, SERB A, KHIAT A, et al. Practical implementation of memristor-based threshold logic gates[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(8): 3041–3051. doi: 10.1109/TCSI.2019.2902475
    DANABOINA Y K Y, SAMANTA P, DATTA K, et al. Design and implementation of threshold logic functions using memristors[C]. The 32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded Systems, Delhi, India, 2019: 518–519. doi: 10.1109/VLSID.2019.00115.
    VOURKAS I and SIRAKOULIS G C. A novel design and modeling paradigm for memristor-based crossbar circuits[J]. IEEE Transactions on Nanotechnology, 2012, 11(6): 1151–1159. doi: 10.1109/TNANO.2012.2217153
    VOURKAS I and SIRAKOULIS G C. Memristor-based combinational circuits: A design methodology for encoders/decoders[J]. Microelectronics Journal, 2014, 45(1): 59–70. doi: 10.1016/j.mejo.2013.10.001
    VOURKAS I and SIRAKOULIS G C. Employing threshold‐based behavior and network dynamics for the creation of memristive logic circuits and architectures[J]. Physica Status Solidi (C) , 2015, 12(1/2): 168–174. doi: 10.1002/pssc.201400161
    PAPANDROULIDAKIS G, VOURKAS I, VASILEIADIS N, et al. Boolean logic operations and computing circuits based on memristors[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61(12): 972–976. doi: 10.1109/TCSII.2014.2357351
    KHALID M and SINGH J. Memristor based unbalanced ternary logic gates[J]. Analog Integrated Circuits and Signal Processing, 2016, 87(3): 399–406. doi: 10.1007/s10470-016-0733-1
    SOLIMAN N S, FOUDA M E, and RADWAN A G. Memristor-CNTFET based ternary logic gates[J]. Microelectronics Journal, 2018, 72: 74–85. doi: 10.1016/j.mejo.2017.12.008
    MOHAMMED M U, VIJJAPURAM R, and CHOWDHURY M H. Novel CNTFET and memristor based unbalanced ternary logic gate[C]. The 61st IEEE International Midwest Symposium on Circuits and Systems, Windsor, Canada, 2018: 1106–1109. doi: 10.1109/MWSCAS.2018.8623845.
    SOLIMAN N S, FOUDA M E, SAID L A, et al. Memristor-CNTFET based ternary comparator unit[C]. The 30th International Conference on Microelectronics, Sousse, Tunisia, 2018: 148–151. doi: 10.1109/ICM.2018.8704010.
    SOLIMAN N, FOUDA M E, ALHURBI A G, et al. Ternary functions design using memristive threshold logic[J]. IEEE Access, 2019, 7: 48371–48381. doi: 10.1109/ACCESS.2019.2909500
    EBRAHIMI S, SABBAGHI-NADOOSHAN R, and TAVAKOLI M B. Design of a ternary logical circuit using the Au-DNA-Ag memristor[J]. Journal of Electronic Materials, 2019, 48(10): 6261–6268. doi: 10.1007/s11664-019-07413-1
    CHEN Qilai, LIU Gang, TANG Minghua, et al. A univariate ternary logic and three-valued multiplier implemented in a nano-columnar crystalline zinc oxide memristor[J]. RSC Advances, 2019, 9(42): 24595–24602. doi: 10.1039/C9RA04119B
    FAROOQ U and ASLAM M H. Design and implementation of basic building blocks of FPGA using memristor-transistor hybrid approach[C]. The 5th International Conference on the Innovative Computing Technology, Pontevedra, Spain, 2015: 142–147. doi: 10.1109/INTECH.2015.7173484.
    SAMPATH M, MANE P S, and RAMESHA C K. Hybrid CMOS-memristor based FPGA architecture[C]. 2015 International Conference on VLSI Systems, Architecture, Technology and Applications, Bangalore, India, 2015: 1–6. doi: 10.1109/VLSI-SATA.2015.7050461.
    FAROOQ U, BHATTI M K, and ASLAM M H. A novel heterogeneous FPGA architecture based on memristor-transistor hybrid approach[C]. 2016 International Conference on Design and Technology of Integrated Systems in Nanoscale Era, Istanbul, Turkey, 2016: 1–6. doi: 10.1109/DTIS.2016.7483890.
    ASLAM M H, FAROOQ U, AWAIS M N, et al. Exploring the effect of LUT size on the area and power consumption of a novel memristor-transistor hybrid FPGA architecture[J]. Arabian Journal for Science and Engineering, 2016, 41(8): 3035–3049. doi: 10.1007/s13369-016-2068-8
    XIE Lei, DU NGUYEN H A D, TAOUIL M, et al. Non-volatile look-up table based FPGA implementations[C]. The 11th International Design & Test Symposium, Hammamet, Tunisia, 2016: 165–170. doi: 10.1109/IDT.2016.7843034.
    WANG Xiaoping, CHEN Lin, SHEN Yi, et al. A novel circuit design for complementary resistive switch-based stateful logic operations[J]. Chinese Physics B, 2016, 25(5): 058502. doi: 10.1088/1674-1056/25/5/058502
    WANG Xiaoping, CHEN Kai, FENG Wei, et al. A neotype implemention method for CRS-based logic gates in crossbar array[C]. The 35th Chinese Control Conference, Chengdu, China, 2016: 5835–5840. doi: 10.1109/ChiCC.2016.7554270.
  • 加载中
图(12)
计量
  • 文章访问数:  4071
  • HTML全文浏览量:  1918
  • PDF下载量:  266
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-07
  • 修回日期:  2020-02-04
  • 网络出版日期:  2020-03-02
  • 刊出日期:  2020-06-04

目录

    /

    返回文章
    返回