高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DNA适配体的荧光生物传感器

董亚非 胡文晓 钱梦瑶 王越

董亚非, 胡文晓, 钱梦瑶, 王越. 基于DNA适配体的荧光生物传感器[J]. 电子与信息学报, 2020, 42(6): 1374-1382. doi: 10.11999/JEIT190860
引用本文: 董亚非, 胡文晓, 钱梦瑶, 王越. 基于DNA适配体的荧光生物传感器[J]. 电子与信息学报, 2020, 42(6): 1374-1382. doi: 10.11999/JEIT190860
Yafei DONG, Wenxiao HU, Mengyao QIAN, Yue WANG. DNA Aptamer-based Fluorescence Biosensor[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1374-1382. doi: 10.11999/JEIT190860
Citation: Yafei DONG, Wenxiao HU, Mengyao QIAN, Yue WANG. DNA Aptamer-based Fluorescence Biosensor[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1374-1382. doi: 10.11999/JEIT190860

基于DNA适配体的荧光生物传感器

doi: 10.11999/JEIT190860
基金项目: 国家自然科学基金(61572302),陕西省自然科学基础研究计划(2020JM-298)
详细信息
    作者简介:

    董亚非:男,1963年,教授,研究方向为DNA计算和生物传感器

    胡文晓:女,1996年,硕士生,研究方向为DNA计算和生物传感器

    钱梦瑶:女,1995年,硕士生,研究方向为DNA计算和生物传感器

    王越:女,1995年,硕士生,研究方向为DNA计算和生物传感器

    通讯作者:

    董亚非 dongyf@snnu.edu.cn

  • 中图分类号: TP212.3

DNA Aptamer-based Fluorescence Biosensor

Funds: The National Natural Science Foundation of China (61572302), The Natural Science Basic Research Plan in Shaanxi Province of China (2020JM-298)
  • 摘要: 近年来,随着DNA纳米技术的飞速发展,基于DNA作为适配体的荧光生物传感器不断被大量学者研究和构建,以实现对靶标物质的灵敏快速检测。作为DNA纳米技术的新兴方向,基于DNA适配体的荧光生物传感器具有巨大的应用潜力。该文对近年来基于DNA适配体所构建的荧光生物传感器进行了总结。包括荧光信号的实现:荧光染料标记;非荧光染料标记。荧光检测信号的提升:酶介导的靶标循环和信号扩增策略;链置换反应介导的靶标循环和信号扩增策略;基于链置换反应和酶介导的靶标循环和信号扩增策略。在此基础上对基于DNA适配体的荧光生物传感器进行展望并提出建议。
  • 樊春梅, 刘冬生. DNA纳米技术: 分子传感、计算与机器[M]. 北京: 科学出版社, 2011: 65.

    FAN Chunmei and LIU Dongsheng. DNA Nanotechnology: Molecular Sensing, Computing and Machines [M]. Beijing: Science Press, 2011: 65.
    ELLINGTON A D and SZOSTAK J W. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346(6287): 818–822. doi: 10.1038/346818a0
    TUERK C and GOLD L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990, 249(4968): 505–510. doi: 10.1126/science.2200121
    DHIMAN A, KALRA P, BANSAL V, et al. Aptamer-based point-of-care diagnostic platforms[J]. Sensors and Actuators B: Chemical, 2017, 246: 535–553. doi: 10.1016/j.snb.2017.02.060
    SAPSFORD K E, BERTI L, and MEDINTZ I L. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations[J]. Angewandte Chemie International Edition, 2006, 45(28): 4562–4589. doi: 10.1002/anie.200503873
    MAZUMDER S, DEY R, MITRA M K, et al. Review: Biofunctionalized quantum dots in biology and medicine[J]. Journal of Nanomaterials, 2009: 38. doi: 10.1155/2009/815734
    SUN Yali, FAN Jianfeng, CUI Linyan, et al. Fluorometric nanoprobes for simultaneous aptamer-based detection of carcinoembryonic antigen and prostate specific antigen[J]. Mikrochimica Acta, 2019, 186(3): 152. doi: 10.1007/s00604-019-3281-4
    CHEN Xueqian, CHEN Shufan, HU Tianyu, et al. Fluorescent aptasensor for adenosine based on the use of quaternary CuInZnS quantum dots and gold nanoparticles[J]. Microchimica Acta, 2017, 184(5): 1361–1367. doi: 10.1007/s00604-017-2128-0
    LU Yizhong and CHEN Wei. Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries[J]. Chemical Society Reviews, 2012, 41(9): 3594–3623. doi: 10.1039/c2cs15325d
    ZHANG Manman, GAO Ge, DING Yalin, et al. A fluorescent aptasensor for the femtomolar detection of epidermal growth factor receptor-2 based on the proximity of G-rich sequences to Ag nanoclusters[J]. Talanta, 2019, 199: 238–243. doi: 10.1016/j.talanta.2019.02.014
    LEE S T, RAHMAN R, MUTHOOSAMY K, et al. Amplification-free and direct fluorometric determination of telomerase activity in cell lysates using chimeric DNA-templated silver nanoclusters[J]. Microchimica Acta, 2019, 186(2): 81. doi: 10.1007/s00604-018-3194-7
    KUNINGAS K, RANTANEN T, UKONAHO T, et al. Homogeneous assay technology based on upconverting phosphors[J]. Analytical Chemistry, 2005, 77(22): 7348–7355. doi: 10.1021/ac0510944
    WANG Leyu, YAN Ruoxue, HUO Ziyang, et al. Fluorescence resonant energy transfer biosensor based on upconversion‐luminescent nanoparticles[J]. Angewandte Chemie International Edition, 2005, 44(37): 6054–6057. doi: 10.1002/anie.200501907
    LI Hui, SUN Deen, LIU Yajie, et al. An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer[J]. Biosensors and Bioelectronics, 2014, 55: 149–156. doi: 10.1016/j.bios.2013.11.079
    WANG Yujie, WEI Zikai, LUO Xianda, et al. An ultrasensitive homogeneous aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer[J]. Talanta, 2019, 195: 33–39. doi: 10.1016/j.talanta.2018.11.011
    HE Yue, LIN Yi, TANG Hongwu, et al. A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1[J]. Nanoscale, 2012, 4(6): 2054–2059. doi: 10.1039/C2NR12061E
    DOLATI S, RAMEZANI M, NABAVINIA M S, et al. Selection of specific aptamer against enrofloxacin and fabrication of graphene oxide based label-free fluorescent assay[J]. Analytical Biochemistry, 2018, 549: 124–129. doi: 10.1016/j.ab.2018.03.021
    ZHAO Lianjing, CHENG Ming, LIU Guannan, et al. A fluorescent biosensor based on molybdenum disulfide nanosheets and protein aptamer for sensitive detection of carcinoembryonic antigen[J]. Sensors and Actuators B: Chemical, 2018, 273: 185–190. doi: 10.1016/j.snb.2018.06.004
    CHEN Feng, LIU Yi, CHEN Chunyan, et al. Respective and simultaneous detection tumor markers CA125 and STIP1 using aptamer-based fluorescent and RLS sensors[J]. Sensors and Actuators B: Chemical, 2017, 245: 470–476. doi: 10.1016/j.snb.2017.01.155
    YI Haoyang, YAN Zhiyu, WANG Lumei, et al. Fluorometric determination for ofloxacin by using an aptamer and SYBR Green I[J]. Microchimica Acta, 2019, 186(10): 668. doi: 10.1007/s00604-019-3788-8
    BAHREYNI A, TAHMASEBI S, RAMEZANI M, et al. A novel fluorescent aptasensor for sensitive detection of PDGF-BB protein based on a split complementary strand of aptamer and magnetic beads[J]. Sensors and Actuators B: Chemical, 2019, 280: 10–15. doi: 10.1016/j.snb.2018.10.047
    LIN Sheng, HE Bingyong, YANG Chao, et al. Luminescence switch-on assay of interferon-gamma using a G-quadruplex-selective iridium(III) complex[J]. Chemical communications, 2015, 51(89): 16033–16036. doi: 10.1039/C5CC06655G
    CHEN Mingjian, MA Changbei, YAN Ying, et al. A label-free fluorescence method based on terminal deoxynucleotidyl transferase and thioflavin T for detecting prostate-specific antigen[J]. Analytical and Bioanalytical Chemistry, 2019, 411(22): 5779–5784. doi: 10.1007/s00216-019-01958-0
    WEI Yulian, ZHOU Wenjiao, LIU Jun, et al. Label-free and homogeneous aptamer proximity binding assay for fluorescent detection of protein biomarkers in human serum[J]. Talanta, 2015, 141: 230–234. doi: 10.1016/j.talanta.2015.04.005
    TANG Xiaomin, LI Xiaotong, MA D L, et al. A label-free triplex-to-G-qadruplex molecular switch for sensitive fluorescent detection of acetamiprid[J]. Talanta, 2018, 189: 599–605. doi: 10.1016/j.talanta.2018.07.025
    GUO Limin and ZHAO Qiang. Determination of the platelet-derived growth factor BB by a competitive thrombin-linked aptamer-based Fluorometric assay[J]. Microchimica Acta, 2016, 183(12): 3229–3235. doi: 10.1007/s00604-016-1978-1
    ALI M M, LI Feng, ZHANG Zhiqing, et al. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine[J]. Chemical Society Reviews, 2018, 43(10): 3324–3341. doi: 10.1039/C3CS60439J
    LI Lu, WANG Qian, FENG Jie, et al. Highly sensitive and homogeneous detection of membrane protein on a single living cell by aptamer and nicking enzyme assisted signal amplification based on microfluidic droplets[J]. ACS Publications, 2014, 86(10): 5101–5107. doi: 10.1021/ac500881p
    ZHANG Zhonghui, ZHANG Feng, HE Peng, et al. Fluorometric determination of mercury(II) by using thymine-thymine mismatches as recognition elements, toehold binding, and enzyme-assisted signal amplification[J]. Microchimica Acta, 2019, 186(8): 1–6. doi: 10.1007/s00604-019-3683-3
    ZHANG Zhenzhu and ZHANG Chunyang. Highly sensitive detection of protein with aptamer-based target-triggering two-stage amplification[J]. ACS Publications, 2012, 84(3): 1623–1629. doi: 10.1021/ac2029002
    ZHEN Zhen, LIU Jinwen, QIAN Wen, et al. Homogeneous label-free protein binding assay using small-molecule-labeled DNA nanomachine with DNAzyme-Based chemiluminescence detection[J]. Talanta, 2020, 206: 120175. doi: 10.1016/j.talanta.2019.120175
    HUANG Ru, LIAO Yuhui, ZHOU Xiaoming, et al. Toehold-mediated nonenzymatic amplification circuit on graphene oxide fluorescence switching platform for sensitive and homogeneous microRNA detection[J]. Analytica Chimica Acta, 2015, 888: 162–172. doi: 10.1016/j.aca.2015.07.041
    WANG Xiuzhong, JIANG Aiwen, HOU Ting, et al. Enzyme-free and label-free fluorescence aptasensing strategy for highly sensitive detection of protein based on target-triggered hybridization chain reaction amplification[J]. Biosensors and Bioelectronics, 2015, 70: 324–329. doi: 10.1016/j.bios.2015.03.053
    HU Jiaming, SHENG Yan, KWAK K J, et al. A signal-amplifiable biochip quantifies extracellular vesicle-associated RNAs for early cancer detection[J]. Nature Communications, 2017, 8(1): 1683. doi: 10.1038/s41467-017-01942-1
    ZHANG Xiaobing, ZHANG Zidong, XING Hang, et al. Catalytic and molecular beacons for amplified detection of metal ions and organic molecules with high sensitivity[J]. ACS Publications, 2010, 82(12): 5005–5011. doi: 10.1021/ac1009047
    SATO S, FUJITA K, KANAZAWA M, et al. Electrochemical assay for deoxyribonuclease I activity[J]. Analytical Biochemistry, 2008, 381(2): 233–239. doi: 10.1016/j.ab.2008.07.014
    ZHANG Jun, RAN Fengying, ZHOU Wenbo, et al. Ultrasensitive fluorescent aptasensor for MUC1 detection based on deoxyribonuclease I-aided target recycling signal amplification[J]. RSC Advances, 2018, 8(56): 32009–32015. doi: 10.1039/C8RA06498A
    WANG Hui, CHEN Hui, HUANG Zhipeng, et al. DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection[J]. Talanta, 2018, 184: 219–226. doi: 10.1016/j.talanta.2018.02.083
    CHAN S H, ZHU Zhenyu, VAN ETTEN J L, et al. Cloning of CviPII nicking and modification system from chlorella virus NYs-1 and application of Nt.CviPII in random DNA amplification[J]. Nucleic Acids Research, 2004, 32(21): 6187–6199. doi: 10.1093/nar/gkh958
    LI Xiang, DING Xuelian and FAN Jing. Nicking endonuclease-assisted signal amplification of a split molecular aptamer beacon for biomolecule detection using graphene oxide as a sensing platform[J]. Analyst, 2015, 140(23): 7918–7925. doi: 10.1039/c5an01759a
    NING Yi, HU Jue, WEI Ke, et al. Fluorometric determination of mercury(II) via a graphene oxide-based assay using exonuclease III-assisted signal amplification and thymidine-Hg(II)-thymidine interaction[J]. Microchimica Acta, 2019, 186(4): 216. doi: 10.1007/s00604-019-3332-x
    XIAO Xue, TAO Jing, ZHANG Hongzhi, et al. Exonuclease III-assisted graphene oxide amplified fluorescence anisotropy strategy for ricin detection[J]. Biosensors and Bioelectronics, 2016, 85: 822–827. doi: 10.1016/j.bios.2016.05.091
    CUI Miao, XIAO Xianjin, ZHAO Meiping, et al. Detection of single nucleotide polymorphism by measuring extension kinetics with T7 exonuclease mediated isothermal amplification[J]. Analyst, 2018, 143(1): 116–122. doi: 10.1039/C7AN00875A
    JACOBSEN H, KLENOW H, and OVERGAARD-HANSEN K. The N-terminal amino-acid sequences of DNA polymerase I from Escherichia coli and of the large and the small fragments obtained by a limited proteolysis[J]. European Journal of Biochemistry, 1974, 45(2): 623–627. doi: 10.1111/j.1432-1033.1974.tb03588.x
    DERBYSHIRE V, FREEMONT P S, SANDERSON M R, et al. Genetic and crystallographic studies of the 3’, 5’-exonucleolytic site of DNA polymerase I[J]. Science, 1988, 240(4849): 199–201. doi: 10.1126/science.2832946
    ZHANG D Y and SEELIG G. Dynamic DNA nanotechnology using strand-displacement reactions[J]. Nature Chemistry, 2011, 3(2): 103–113. doi: 10.1038/nchem.957
    DIRKS R M and PIERCE N A. Triggered amplification by hybridization chain reaction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(43): 15275–15278. doi: 10.1073/pnas.0407024101
    LI Junlong, SUN Kexin, CHEN Zhongping, et al. A fluorescence biosensor for VEGF detection based on DNA assembly structure switching and isothermal amplification[J]. Biosensors and Bioelectronics, 2017, 89: 964–969. doi: 10.1016/j.bios.2016.09.078
    ZHOU Qingzhen, YAN Hongxia, RAN Fengying, et al. Ultrasensitive enzyme-free fluorescent detection of VEGF165 based on target-triggered hybridization chain reaction amplification[J]. RSC Advances, 2018, 8(45): 25955–25960. doi: 10.1039/C8RA04721A
    LI Qiong, LIU Zhi, ZHOU Danhua, et al. A cascade toehold-mediated strand displacement strategy for label-free and sensitive non-enzymatic recycling amplification detection of the HIV-1 gene[J]. Analyst, 2019, 144(6): 2173–2178. doi: 10.1039/C8AN02340A
    YIN Peng, CHOI H M T, CALVERT C R, et al. Programming biomolecular self-assembly pathways[J]. Nature, 2008, 451(7176): 318–322. doi: 10.1038/nature06451
    XU Jiayao, SHI Ming, HUANG Huakui, et al. A fluorescent aptasensor based on single oligonucleotide-mediated isothermal quadratic amplification and graphene oxide fluorescence quenching for ultrasensitive protein detection[J]. Analyst, 2018, 143(16): 3918–3925. doi: 10.1039/c8an01032c
    ZHOU Jie, MENG Lingchang, YE Weiran, et al. A sensitive detection assay based on signal amplification technology for Alzheimer’s disease’s early biomarker in exosome[J]. Analytica Chimica Acta, 2018, 1022: 124–130. doi: 10.1016/j.aca.2018.03.016
    YANG Wenting, ZHOU Xingxing, ZHAO Jianmin, et al. A cascade amplification strategy of catalytic hairpin assembly and hybridization chain reaction for the sensitive fluorescent assay of the model protein carcinoembryonic antigen[J]. Microchimica Acta, 2018, 185(2): 100. doi: 10.1007/s00604-017-2620-6
    ZHANG Zheng, HAN Jialun, LI Yitan, et al. A sensitive and recyclable fluorescence aptasensor for detection and extraction of platelet-derived growth factor BB[J]. Sensors and Actuators B: Chemical, 2018, 277: 179–185. doi: 10.1016/j.snb.2018.09.013
    HU Kun, LIU Jinwen, CHEN Jia, et al. An amplified graphene oxide-based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling forbioassays[J]. Biosensors and Bioelectronics, 2013, 42: 598–602. doi: 10.1016/j.bios.2012.11.025
    LI Chunhong, XIAO Xue, TAO Jing, et al. A graphene oxide-based strand displacement amplification platform for ricin detection using aptamer as recognition element[J]. Biosensors and Bioelectronics, 2017, 91: 149–154. doi: 10.1016/j.bios.2016.12.010
    HE Jinglin, ZHANG Yang, YANG Chan, et al. Hybridization chain reaction based DNAzyme fluorescent sensor for L-histidine assay[J]. Analytical Methods, 2019, 11(16): 2204–2210. doi: 10.1039/C9AY00526A
    YIN Jinjin, LIU Yaqing, WANG Shuo, et al. Engineering a universal and label-free evaluation method for mycotoxins detection based on strand displacement amplification and G-quadruplex signal amplification[J]. Sensors and Actuators B: Chemical, 2018, 256: 573–579. doi: 10.1016/j.snb.2017.10.083
    CHEN Piaopiao, HUANG Ke, ZHANG Peng, et al. Exonuclease III-assisted strand displacement reaction-driven cyclic generation of G-quadruplex strategy for homogeneous fluorescent detection of melamine[J]. Talanta, 2019, 203: 255–260. doi: 10.1016/j.talanta.2019.05.020
    DARWISH I A, WANI T A, KHALIL N Y, et al. Novel automated flow-based immunosensor for real-time measurement of the breast cancer biomarker CA15–3 in serum[J]. Talanta, 2012, 97: 499–504. doi: 10.1016/j.talanta.2012.05.005
    LOISEAU A, ZHANG Lu, HU D, et al. Core-shell gold/silver nanoparticles for localized surface plasmon resonance-based naked-eye toxin biosensing[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46462–46471. doi: 10.1021/acsami.9b14980
    CHUANG C S, WU C Y, JUAN P H, et al. LMP1 gene detection using a capped gold nanowire array surface plasmon resonance sensor in a microfluidic chip[J]. Analyst, 2020, 145(1): 52–60. doi: 10.1039/c9an01419e
    GHODAKE G, SHINDE S, SARATALE R G, et al. Silver nanoparticle probe for colorimetric detection of aminoglycoside antibiotics: picomolar-level sensitivity toward streptomycin in water, serum, and milk samples[J]. Journal of the Science of Food and Agriculture, 2020, 100(2): 874–884. doi: 10.1002/jsfa.10129
    ZHAO Lifang, WEI Qin, WU Hua, et al. Ionic liquid functionalized graphene based immunosensor for sensitive detection of carbohydrate antigen 15–3 integrated with Cd2+-functionalized nanoporous TiO2 as labels[J]. Biosensors and Bioelectronics, 2014, 59: 75–80. doi: 10.1016/j.bios.2014.03.006
    JIANG Xinya, WANG Haijun, YUAN Ruo, et al. Sensitive electrochemiluminescence detection for CA15–3 based on immobilizing luminol on dendrimer functionalized ZnO nanorods[J]. Biosensors and Bioelectronics, 2015, 63: 33–38. doi: 10.1016/j.bios.2014.07.009
    HAMD-GHADAREH S, SALIMI A, PARSA S, et al. Simultaneous biosensing of CA125 and CA15–3 tumor markers and imaging of OVCAR-3 and MCF-7 cells lines via bi-color FRET phenomenon using dual blue-green luminescent carbon dots with single excitation wavelength[J]. International Journal of Biological Macromolecules, 2018, 118: 617–628. doi: 10.1016/j.ijbiomac.2018.06.116
    LU Zijing, WANG Peng, XIONG Weiwei, et al. Simultaneous detection of mercury (II), lead (II) and silver (I) based on fluorescently labelled aptamer probes and graphene oxide[J]. Environmental Technology, 2020, 317: 1–27. doi: 10.1080/09593330.2020.1721565
    田威, 黄高明. 非理想关联下多传感器系统误差的稳健估计[J]. 电子与信息学报, 2018, 40(3): 641–647. doi: 10.11999/JEIT170579

    TIAN Wei and HUANG Gaoming. Robust multisensor bias estimation under nonideal association[J]. Journal of Electronics &Information Technology, 2018, 40(3): 641–647. doi: 10.11999/JEIT170579
    YANG Jing, DONG Chen, DONG Yafei, et al. Logic nanoparticle beacon triggered by the binding-induced effect of multiple inputs[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14486–14492. doi: 10.1021/am5036994
    YANG Jing, JIANG Shuoxing, LIU Xiangrong, et al. Aptamer-binding directed DNA origami pattern for logic gates[J]. ACS Applied Materials & Interfaces, 2016, 8(49): 34054–34060. doi: 10.1021/acsami.6b10266
    PAN Linqiang, WANG Zhiyu, LI Yifan, et al. Nicking enzyme-controlled toehold regulation for DNA logic circuits[J]. Nanoscale, 2017, 9(46): 18223–18228. doi: 10.1039/C7NR06484E
    YANG Jing, WU Ranfeng, LI Yifan, et al. Entropy-driven DNA logic circuits regulated by DNAzyme[J]. Nucleic Acids Research, 2018, 46(16): 8532–8541. doi: 10.1093/nar/gky663
    刘素艳, 刘元安, 吴帆, 等. 物联网中基于相似性计算的传感器搜索[J]. 电子与信息学报, 2018, 40(12): 3020–3027. doi: 10.11999/JEIT171085

    LIU Suyan, LIU Yuanan, WU Fan, et al. Sensor search based on sensor similarity computing in the internet of things[J]. Journal of Electronics &Information Technology, 2018, 40(12): 3020–3027. doi: 10.11999/JEIT171085
    RANALLO S, PRÉVOST-TREMBLAY C, IDILI A, et al. Antibody-powered nucleic acid release using a DNA-based nanomachine[J]. Nature Communications, 2017, 8: 15150. doi: 10.1038/ncomms15150
    沈贺, 张立明, 张智军. 石墨烯在生物医学领域的应用[J]. 东南大学学报(医学版), 2011, 30(1): 218–223. doi: 10.3969/j.issn.1671-6264.2011.01.035

    SHEN He, ZHANG Liming, and ZHANG Zhijun. Graphene for biomedical applications[J]. Journal of Southeast University (Medical Science Edition), 2011, 30(1): 218–223. doi: 10.3969/j.issn.1671-6264.2011.01.035
    LIU Zhuang, ROBINSON J T, SUN Xiaoming, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs[J]. Journal of the American Chemical Society, 2008, 130(33): 10876–10877. doi: 10.1021/ja803688x
    XU Fei, WU Tingfang, SHI Xiaolong, et al. A study on a special DNA nanotube assembled from two single-stranded tiles[J]. Nanotechnology, 2019, 30(11): 115602. doi: 10.1088/1361-6528/aaf9bc
  • 加载中
计量
  • 文章访问数:  3989
  • HTML全文浏览量:  1217
  • PDF下载量:  279
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-01
  • 修回日期:  2020-03-14
  • 网络出版日期:  2020-04-03
  • 刊出日期:  2020-06-22

目录

    /

    返回文章
    返回