高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

忆阻突触耦合Hopfield神经网络的初值敏感动力学

陈墨 陈成杰 包伯成 徐权

陈墨, 陈成杰, 包伯成, 徐权. 忆阻突触耦合Hopfield神经网络的初值敏感动力学[J]. 电子与信息学报, 2020, 42(4): 870-877. doi: 10.11999/JEIT190858
引用本文: 陈墨, 陈成杰, 包伯成, 徐权. 忆阻突触耦合Hopfield神经网络的初值敏感动力学[J]. 电子与信息学报, 2020, 42(4): 870-877. doi: 10.11999/JEIT190858
Mo CHEN, Chengjie CHEN, Bocheng BAO, Quan XU. Initial Sensitive Dynamics in Memristor Synapse-coupled Hopfield Neural Network[J]. Journal of Electronics & Information Technology, 2020, 42(4): 870-877. doi: 10.11999/JEIT190858
Citation: Mo CHEN, Chengjie CHEN, Bocheng BAO, Quan XU. Initial Sensitive Dynamics in Memristor Synapse-coupled Hopfield Neural Network[J]. Journal of Electronics & Information Technology, 2020, 42(4): 870-877. doi: 10.11999/JEIT190858

忆阻突触耦合Hopfield神经网络的初值敏感动力学

doi: 10.11999/JEIT190858
基金项目: 国家自然科学基金(51777016, 61801054, 61601062),江苏省研究生科研与实践创新计划项目(KYCX19_1767)
详细信息
    作者简介:

    陈墨:女,1982年生,副教授,研究方向为忆阻电路与系统、类脑计算与神经网络

    陈成杰:男,1996年生,硕士生,研究方向为类脑计算与神经网络、神经混沌动力学

    包伯成:男,1965年生,教授,研究方向为忆阻电路与系统、混沌信息动力学和类脑计算与神经网络

    徐权:男,1983年生,副教授,研究方向为非自治混沌电路与系统、类脑计算与神经网络

    通讯作者:

    陈墨 mchen@cczu.edu.cn

  • 中图分类号: TN601; TN711.4

Initial Sensitive Dynamics in Memristor Synapse-coupled Hopfield Neural Network

Funds: The National Natural Science Foundation of China (51777016, 61801054, 61601062), The Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (KYCX19_1767)
  • 摘要: 该文报道了3神经元Hopfield神经网络(HNN)在电磁感应电流作用下的初值敏感动力学。利用非理想忆阻突触,模拟由两个相邻神经元膜电位之差引起的电磁感应电流,构建了一种简单的4维忆阻Hopfield神经网络模型。借助理论分析和数值仿真,分析了不同忆阻突触耦合强度下的复杂动力学行为,揭示了与状态初值密切相关的特殊动力学行为。最后,设计了该忆阻HNN的模拟等效实现电路,并由PSIM电路仿真验证了MATLAB数值仿真的正确性。
  • 图  1  基于非理想忆阻突触的HNN的连接拓扑

    图  2  不同忆阻耦合强度时H1(y, z)和H2(y, z)函数曲线及交点平衡点

    图  3  不同初值下随参数k变化的共存分岔行为

    图  4  不同忆阻耦合强度下x1x3平面上的相轨图

    图  5  状态变量x1随状态初值变化的分岔图

    图  6  不同忆阻耦合强度下x1(0)–x2(0)平面的吸引盆

    图  7  不同忆阻耦合强度下共存吸引子在x1x3平面的相轨图

    图  8  忆阻HNN模型(2)的等效实现电路

    图  9  PSIM电路仿真得到的共存吸引子在v1x3平面上的相轨图

    表  1  k=–1, 0和1时的平衡点及其特征值和稳定性

    k平衡点特征值稳定性
    –1P0: (0, 0, 0, 0)1.6062, –0.9531±j2.3986, –1不稳定指数1鞍焦
    P1: (–0.0019, –0.1689, 3.3462, 0.1670)0.0981±j2.0026, –0.8763, –0.9875不稳定指数2鞍焦
    P2: (0.0369, 0.1814, –3.5887, –0.1445)0.5146±j2.0051, –0.9923, –1.0882不稳定指数2鞍焦
    P3: (0.9448, 2.5018, –19.7332, –1.5570)3.4659, –0.9464, –1, –1.6894不稳定鞍点
    0P0: (0, 0, 0, 0)1.6062, –0.9531±j2.3986, –1不稳定指数1鞍焦
    P1: (0.0220, 0.1761, –3.4860, –0.1541)0.3267±j2.0074, –0.9906, –1不稳定指数2鞍焦
    P2: (–0.0220, –0.1761, 3.4860, 0.1541)0.3267±j2.0074, –0.9906, –1不稳定指数2鞍焦
    1P0: (0, 0, 0, 0)1.6062, –0.9531±j2.3986, –1不稳定指数1鞍焦
    P1: (–0.9448, –2.5018, 19.7332, 1.5570)3.4659, –0.9464, –1, –1.6894不稳定鞍点
    P2: (–0.0369, –0.1814, 3.5887, 0.1445)0.5146±j2.0051, –0.9923, –1.0882不稳定指数2鞍焦
    P3: (0.0019, 0.1689, –3.3462, –0.1670)0.0981±j2.0026, –0.8763, –0.9875不稳定指数2鞍焦
    下载: 导出CSV

    表  2  图7中不同颜色吸引子对应的初值及吸引子类型

    颜色k=0.6k=–0.5吸引子类型
    (–10–6, 0, 0, 0)(0, –10–9, 0, 0)周期吸引子
    (10–6, 0, 0, 0)(0, 10–9, 0, 0)多周期吸引子
    (10–5, 0, 0, 0)(0, 10–7, 0, 0)混沌吸引子
    (1, 0, 0, 0)(0, –2, 0, 0)发散
    (0, 5, 0, 0)发散
    下载: 导出CSV
  • HOPFIELD J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(10): 3088–3092. doi: 10.1073/pnas.81.10.3088
    KORN H and FAURE P. Is there chaos in the brain? II. Experimental evidence and related models[J]. Comptes Rendus Biologies, 2003, 326(9): 787–840. doi: 10.1016/j.crvi.2003.09.011
    MA Jun and TANG Jun. A review for dynamics in neuron and neuronal network[J]. Nonlinear Dynamics, 2017, 89(3): 1569–1578. doi: 10.1007/s11071-017-3565-3
    阮秀凯, 张志涌. 基于连续Hopfield型神经网络的QAM信号盲检测[J]. 电子与信息学报, 2011, 33(7): 1600–1605. doi: 10.3724/SP.J.1146.2010.01271

    RUAN Xiukai and ZHANG Zhiyong. Blind detection of QAM signals using continuous Hopfield-type neural network[J]. Journal of Electronics &Information Technology, 2011, 33(7): 1600–1605. doi: 10.3724/SP.J.1146.2010.01271
    HILLAR C J and TRAN N M. Robust exponential memory in Hopfield networks[J]. The Journal of Mathematical Neuroscience, 2018, 8: 1–20. doi: 10.1186/s13408-017-0056-2
    王春华, 蔺海荣, 孙晶如, 等. 基于忆阻器的混沌、存储器及神经网络电路研究进展[J]. 电子与信息学报, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821

    WANG Chunhua, LIN Hairong, SUN Jingru, et al. Research progress on chaos, memory and neural network circuits based on memristor[J]. Journal of Electronics &Information Technology, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821
    NJITACKE Z T and KENGNE J. Complex dynamics of a 4D Hopfield Neural Networks (HNNs) with a nonlinear synaptic weight: Coexistence of multiple attractors and remerging Feigenbaum trees[J]. AEU-International Journal of Electronics and Communications, 2018, 93: 242–252. doi: 10.1016/j.aeue.2018.06.025
    DANCA M F and KUZNETSOV N. Hidden chaotic sets in a Hopfield neural system[J]. Chaos, Solitons & Fractals, 2017, 103: 144–150. doi: 10.1016/j.chaos.2017.06.002
    RAJAGOPAL K, MUNOZ-PACHECO J M, PHAM V T, et al. A Hopfield neural network with multiple attractors and its FPGA design[J]. The European Physical Journal Special Topics, 2018, 227(7/9): 811–820. doi: 10.1140/epjst/e2018-800018-7
    BAO Bocheng, CHEN Chengjie, BAO Han, et al. Dynamical effects of neuron activation gradient on Hopfield neural network: Numerical analyses and hardware experiments[J]. International Journal of Bifurcation and Chaos, 2019, 29(4): 1930010. doi: 10.1142/S0218127419300106
    NJITACKE Z T, KENGNE J, FOZIN T F, et al. Dynamical analysis of a novel 4-neurons based Hopfield neural network: emergences of antimonotonicity and coexistence of multiple stable states[J]. International Journal of Dynamics and Control, 2019, 7(3): 823–841. doi: 10.1007/s40435-019-00509-w
    刘益春, 林亚, 王中强, 等. 氧化物基忆阻型神经突触器件[J]. 物理学报, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262

    LIU Yichun, LIN Ya, WANG Zhongqiang, et al. Oxide-based memristive neuromorphic synaptic devices[J]. Acta Physica Sinica, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    PHAM V T, JAFARI S, VAIDYANATHAN S, et al. A novel memristive neural network with hidden attractors and its circuitry implementation[J]. Science China Technological Sciences, 2016, 59(3): 358–363. doi: 10.1007/s11431-015-5981-2
    BAO Bocheng, QIAN Hui, XU Quan, et al. Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network[J]. Frontiers in Computational Neuroscience, 2017, 11: No. 81, 1–14. doi: 10.3389/fncom.2017.00081
    HU Xiaoyu, LIU Chongxin, LIU Ling, et al. Chaotic dynamics in a neural network under electromagnetic radiation[J]. Nonlinear Dynamics, 2018, 91(3): 1541–1554. doi: 10.1007/s11071-017-3963-6
    LIN Hairong and WANG Chunhua. Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network[J]. Applied Mathematics and Computation, 2020, 369: 124840. doi: 10.1016/j.amc.2019.124840
    BAO Han, HU Aihuang, LIU Wenbo, et al. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(2): 502–511. doi: 10.1109/TNNLS.2019.2905137
    XU Fei, ZHANG Jiqian, JIN Meng, et al. Chimera states and synchronization behavior in multilayer memristive neural networks[J]. Nonlinear Dynamics, 2018, 94(2): 775–783. doi: 10.1007/s11071-018-4393-9
    BAO Han, LIU Wenbo, and HU Aihuang. Coexisting multiple firing patterns in two adjacent neurons coupled by memristive electromagnetic induction[J]. Nonlinear Dynamics, 2019, 95(1): 43–56. doi: 10.1007/s11071-018-4549-7
    CHEN Chengjie, CHEN Jingqi, BAO Han, et al. Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons[J]. Nonlinear Dynamics, 2019, 95(4): 3385–3399. doi: 10.1007/s11071-019-04762-8
    CHEN Chengjie, BAO Han, CHEN Mo, et al. Non-ideal memristor synapse-coupled bi-neuron Hopfield neural network: Numerical simulations and breadboard experiments[J]. AEU-International Journal of Electronics and Communications, 2019, 111: 152894. doi: 10.1016/j.aeue.2019.152894
    BREAKSPEAR M. Dynamic models of large-scale brain activity[J]. Nature Neuroscience, 2017, 20(3): 340–352. doi: 10.1038/nn.4497
    WANG Guangyi, YUAN Fang, CHEN Guanrong, et al. Coexisting multiple attractors and riddled basins of a memristive system[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28(1): 013125. doi: 10.1063/1.5004001
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  3165
  • HTML全文浏览量:  1008
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-01
  • 修回日期:  2020-01-20
  • 网络出版日期:  2020-03-13
  • 刊出日期:  2020-06-04

目录

    /

    返回文章
    返回