ZHANG Zhengdi, LI Yanyan, and BI Qinsheng. Routes to bursting in a periodically driven oscillator[J]. Physics Letters A, 2013, 377(13): 975–980. doi: 10.1016/j.physleta.2013.02.022
|
LIEPELT S, FREUND J A, SCHIMANSKY-GEIER L, et al. Information processing in noisy burster models of sensory neurons[J]. Journal of Theoretical Biology, 2005, 237(1): 30–40. doi: 10.1016/j.jtbi.2005.03.029
|
BRØNS M and KAASEN R. Canards and mixed-mode oscillations in a forest pest model[J]. Theoretical Population Biology, 2010, 77(4): 238–242. doi: 10.1016/j.tpb.2010.02.003
|
PROSKURKIN I S and VANAG V K. New type of excitatory pulse coupling of chemical oscillators via inhibitor[J]. Physical Chemistry Chemical Physics, 2015, 17(27): 17906–17913. doi: 10.1039/C5CP02098K
|
HAN Xiujing, YU Yue, and ZHANG Chun. A novel route to chaotic bursting in the parametrically driven Lorenz system[J]. Nonlinear Dynamics, 2017, 88(4): 2889–2897. doi: 10.1007/s11071-017-3418-0
|
WU Huagan, BAO Bocheng, LIU Zhong, et al. Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator[J]. Nonlinear Dynamics, 2016, 83(1/2): 893–903.
|
IZHIKEVICH E M. Neural excitability, spiking and bursting[J]. International Journal of Bifurcation and Chaos, 2000, 10(6): 1171–1266. doi: 10.1142/S0218127400000840
|
IZHIKEVICH E M, DESAI N S, WALCOTT E C, et al. Bursts as a unit of neural information: Selective communication via resonance[J]. Trends in Neurosciences, 2003, 26(3): 161–167. doi: 10.1016/S0166-2236(03)00034-1
|
INNOCENTI G, MORELLI A, GENESIO R, et al. Dynamical phases of the Hindmarsh-Rose neuronal model: Studies of the transition from bursting to spiking chaos[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2007, 17(4): 043128. doi: 10.1063/1.2818153
|
BAO Bocheng, YANG Qinfeng, ZHU Lei, et al. Chaotic bursting dynamics and coexisting multistable firing patterns in 3D autonomous Morris-Lecar model and microcontroller-based validations[J]. International Journal of Bifurcation and Chaos, 2019, 29(10): 1950134. doi: 10.1142/S0218127419501347
|
LI Xianghong and HOU Jingyu. Bursting phenomenon in a piecewise mechanical system with parameter perturbation in stiffness[J]. International Journal of Non-Linear Mechanics, 2016, 81: 165–176. doi: 10.1016/j.ijnonlinmec.2016.01.014
|
RINZEL J. Discussion: Electrical excitability of cells, theory and experiment: Review of the Hodgkin-Huxley foundation and an update[J]. Bulletin of Mathematical Biology, 1990, 52(1/2): 5–23.
|
MA Xindong, and CAO Shuqian. Pitchfork-bifurcation-delay-induced bursting patterns with complex structures in a parametrically driven Jerk circuit system[J]. Journal of Physics A: Mathematical and Theoretical, 2018, 51(33): 335101. doi: 10.1088/1751-8121/aace0d
|
TEKA W, TABAK J, and BERTRAM R. The relationship between two fast/slow analysis techniques for bursting oscillations[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2012, 22(4): 043117. doi: 10.1063/1.4766943
|
YU Yue, ZHANG Zhengdi, and HAN Xiujing. Periodic or chaotic bursting dynamics via delayed pitchfork bifurcation in a slow-varying controlled system[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 56: 380–391. doi: 10.1016/j.cnsns.2017.08.019
|
ZHANG Hao, CHEN Diyi, XU Beibei, et al. The slow-fast dynamical behaviors of a hydro-turbine governing system under periodic excitations[J]. Nonlinear Dynamics, 2017, 87(4): 2519–2528. doi: 10.1007/s11071-016-3208-0
|
HAN Xiujing, ZHANG Yi, BI Qinsheng, et al. Two novel bursting patterns in the Duffing system with multiple-frequency slow parametric excitations[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28(4): 043111. doi: 10.1063/1.5012519
|
HAN Xiujing, YU Yue, ZHANG Chun, et al. Turnover of hysteresis determines novel bursting in Duffing system with multiple-frequency external forcings[J]. International Journal of Non-Linear Mechanics, 2017, 89: 69–74. doi: 10.1016/j.ijnonlinmec.2016.11.008
|
HAN Xiujing, BI Qinsheng, JI Peng, et al. Fast-slow analysis for parametrically and externally excited systems with two slow rationally related excitation frequencies[J]. Physical Review E, 2015, 92(1): 012911. doi: 10.1103/PhysRevE.92.012911
|
WEI Mengke, HAN Xiujing, ZHANG Xiaofang, et al. Bursting oscillations induced by bistable pulse-shaped explosion in a nonlinear oscillator with multiple-frequency slow excitations[J]. Nonlinear Dynamics, 2020, 99(2): 1301–1312. doi: 10.1007/s11071-019-05355-1
|
BAO Bocheng, LIU Zhong, and XU Jianping. Transient chaos in smooth memristor oscillator[J]. Chinese Physics B, 2010, 19(3): 030510. doi: 10.1088/1674-1056/19/3/030510
|
李志军, 曾以成. 基于文氏振荡器的忆阻混沌电路[J]. 电子与信息学报, 2014, 36(1): 88–93.LI Zhijun and ZENG Yicheng. A memristor chaotic circuit based on Wien-bridge oscillator[J]. Journal of Electronics &Information Technology, 2014, 36(1): 88–93.
|
BAO Bocheng, WU Pingye, BAO Han, et al. Chaotic bursting in memristive diode bridge-coupled Sallen-key lowpass filter[J]. Electronics Letters, 2017, 53(16): 1104–1105. doi: 10.1049/el.2017.1647
|
CHEN Mo, QI Jianwei, XU Quan, et al. Quasi-period, periodic bursting and bifurcations in memristor-based FitzHugh-Nagumo circuit[J]. AEU-International Journal of Electronics and Communications, 2019, 110: 152840.
|
BAO Han, HU Aihuang, LIU Wenbo, et al. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(2): 502–511. doi: 10.1109/TNNLS.2019.2905137
|
WU Huagan, YE Yi, CHEN Mo, et al. Extremely slow passages in low-pass filter-based memristive oscillator[J]. Nonlinear Dynamics, 2019, 97(4): 2339–2353. doi: 10.1007/s11071-019-05131-1
|
SHIMIZU T and MORIOKA N. On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model[J]. Physics Letters A, 1980, 76(3/4): 201–204.
|
FENG Wei, HE Yigang, LI Chunlai, et al. Dynamical behavior of a 3D jerk system with a generalized Memristive device[J]. Complexity, 2018: 5620956.
|