Vertex Distinguishing IE-total Coloring of K2,4,p
-
摘要: 该文利用色集合事先分配法、构造染色法、反证法讨论了完全三部图K2,4,p的点可区别IE-全染色问题,确定了K2,4,p的点可区别IE-全色数。
-
关键词:
- 完全三部图 /
- IE-全染色 /
- 点可区别IE-全染色 /
- 点可区别IE-全色数
Abstract: Vertex-distinguishing IE-total colorings of complete tripartite graphs K2,4,p are discussed by using the methods of distributing the color sets in advance, constructing the colorings and contradiction. The vertex-distinguishing IE-total chromatic numbers of K2,4,p are determined. -
表 1 K2,4, p的4-VDIETC
z1 z2 z3 z4 y1 y2 y3 y4 3 3 3 3 x1 1 1 3 3 3 1 3 1 3 x2 1 2 4 4 2 4 2 2 4 y1 4 4 4 4 1 y2 2 2 2 3 3 y3 2 1 2 1 2 y4 4 3 4 4 3 -
HARARY F and PLANTHOLT M. The Point -Distinguishing Chromatic Index[M]. HARARY F, and MAYBEE J S. Graphs and Application. New York: Wiley, 1985: 147–162. HORVŇÁK M and SOTAK R. The fifth jump of the point-distinguishing chromatic index of Kn,n[J]. ARS Combinatoria, 1996, 42: 233–242. HORVNAK M and SOTAK R. Localization of jumps of the point-distinguishing chromatic index of K n, n[J]. Discussiones Mathematicae Graph Theory, 1997, 17(2): 243–251. doi: 10.7151/dmgt.1051 HORŇÁK M and ZAGAGLIA SALVI N. On the point -distinguishing chromatic index of K m, n[J]. ARS Combinatoria, 2006, 80: 75–85. ZAGAGLIA SALVI N. On the value of the point -distinguishing chromatic index of K n, n[J]. ARS Combinatoria, 1990, 29B: 235–244. CHEN Xiang’en. Point-distinguishing chromatic index of the union of paths[J]. Czechoslovak Mathematical Journal, 2014, 64(3): 629–640. doi: 10.1007/s10587-014-0123-8 CHEN Xiang’en, GAO Yuping, and YAO Bing. Vertex-distinguishing IE-total colorings of complete bipartite graphs K m, n (m<n)[J]. Discussiones Mathematicae Graph Theory, 2013, 33(2): 289–306. doi: 10.7151/dmgt.1659 许进. 极大平面图的结构与着色理论(1)色多项式递推公式与四色猜想[J]. 电子与信息学报, 2016, 38(4): 763–779. doi: 10.11999/JEIT160072XU Jin. Theory on the structure and coloring of maximal planar graphs (1) recursion formula of chromatic polynomial and four-color conjecture[J]. Journal of Electronics &Information Technology, 2016, 38(4): 763–779. doi: 10.11999/JEIT160072 许进. 极大平面图的结构与着色理论(2)多米诺构形与扩缩运算[J]. 电子与信息学报, 2016, 38(6): 1271–1296. doi: 10.11999/JEIT160224XU Jin. Theory on structure and coloring of maximal planar graphs (2) Domino configurations and extending-contracting operations[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1271–1296. doi: 10.11999/JEIT160224 许进. 极大平面图的结构与着色理论(3)纯树着色与唯一4-色极大平面图猜想[J]. 电子与信息学报, 2016, 38(6): 1328–1353. doi: 10.11999/JEIT160409XU Jin. Theory on structure and coloring of maximal planar graphs (3) purely tree-colorable and uniquely 4-colorable maximal planar graph conjectures[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1328–1353. doi: 10.11999/JEIT160409 许进. 极大平面图的结构与着色理论(4)-运算与Kempe等价类[J]. 电子与信息学报, 2016, 38(7): 1557–1585. doi: 10.11999/JEIT160483XU Jin. Theory on structure and coloring of maximal planar graphs (4)-operations and Kempe equivalent classes[J]. Journal of Electronics &Information Technology, 2016, 38(7): 1557–1585. doi: 10.11999/JEIT160483 XU Jin, LI Zepeng, and ZHU Enqiang. On purely tree-colorable planar graphs[J]. Information Processing Letter, 2016, 116(8): 532–536. doi: 10.1016/j.ipl.2016.03.011 许进, 李泽鹏, 朱恩强. 极大平面图理论研究进展[J]. 计算机学报, 2015, 38(8): 1680–1704. doi: 10.11897/SP.J.1016.2015.01680XU Jin, LI Zepeng, and ZHU Enqiang. Research progress on the theory of maximal planar graphs[J]. Chinese Journal of Computers, 2015, 38(8): 1680–1704. doi: 10.11897/SP.J.1016.2015.01680 陈祥恩, 李婷. (k,l)-递归极大平面图的结构[J]. 电子与信息学报, 2018, 40(9): 2281–2286. doi: 10.11999/JEIT171021CHEN Xiang’en and LI Ting. The structure of (k,l)-recursive maximal planar graph[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2281–2286. doi: 10.11999/JEIT171021 LI Zepeng, ZHU Enqiang, SHAO Zehui, et al. Size of edge-critical uniquely 3-colorable planar graphs[J]. Discrete Mathematics, 2016, 339(4): 1242–1250. doi: 10.1016/j.disc.2015.11.009 LI Zepeng, ZHU Enqiang, SHAO Zehui, et al. A note on uniquely 3-colourable planar graphs[J]. International Journal of Computer Mathematics, 2017, 94(5): 1028–1035. doi: 10.1080/00207160.2016.1167196 ZHU Enqiang, LI Zepeng, SHAO Zehui, et al. Acyclically 4-colorable triangulations[J]. Information Processing Letters, 2016, 116(6): 401–408. doi: 10.1016/j.ipl.2015.12.005
表(1)
计量
- 文章访问数: 797
- HTML全文浏览量: 372
- PDF下载量: 43
- 被引次数: 0