高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

K2,4,p的点可区别IE-全染色

陈祥恩 张爽 李泽鹏

陈祥恩, 张爽, 李泽鹏. K2,4,p的点可区别IE-全染色[J]. 电子与信息学报, 2020, 42(12): 2999-3004. doi: 10.11999/JEIT190829
引用本文: 陈祥恩, 张爽, 李泽鹏. K2,4,p的点可区别IE-全染色[J]. 电子与信息学报, 2020, 42(12): 2999-3004. doi: 10.11999/JEIT190829
Xiang’en CHEN, Shuang ZHANG, Zepeng LI. Vertex Distinguishing IE-total Coloring of K2,4,p[J]. Journal of Electronics & Information Technology, 2020, 42(12): 2999-3004. doi: 10.11999/JEIT190829
Citation: Xiang’en CHEN, Shuang ZHANG, Zepeng LI. Vertex Distinguishing IE-total Coloring of K2,4,p[J]. Journal of Electronics & Information Technology, 2020, 42(12): 2999-3004. doi: 10.11999/JEIT190829

K2,4,p的点可区别IE-全染色

doi: 10.11999/JEIT190829
基金项目: 国家自然科学基金(11761064, 61163037),兰州大学中央高校基本科研业务费专项基金(lzujbky-2018-37)
详细信息
    作者简介:

    陈祥恩:男,1965年生,教授,研究方向为图论及其应用

    张爽:女,1995年生,硕士,研究方向为图论及其应用

    李泽鹏:男,1988年生,副教授,研究方向为图论及其应用

    通讯作者:

    陈祥恩 chenxe@nwnu.edu.cn

  • 中图分类号: O157.5

Vertex Distinguishing IE-total Coloring of K2,4,p

Funds: The National Natural Science Foundation of China (11761064 61163037), Special Fund for the Operating Expenses of Basic Scientific Research in Central Universities of Lanzhou University (lzujbky-2018-37)
  • 摘要: 该文利用色集合事先分配法、构造染色法、反证法讨论了完全三部图K2,4,p的点可区别IE-全染色问题,确定了K2,4,p的点可区别IE-全色数。
  • 表  1  K2,4, p的4-VDIETC

    z1z2z3z4y1y2y3y4
    3333
    x1113331313
    x2124424224
    y144441
    y222233
    y321212
    y443443
    下载: 导出CSV
  • HARARY F and PLANTHOLT M. The Point -Distinguishing Chromatic Index[M]. HARARY F, and MAYBEE J S. Graphs and Application. New York: Wiley, 1985: 147–162.
    HORVŇÁK M and SOTAK R. The fifth jump of the point-distinguishing chromatic index of Kn,n[J]. ARS Combinatoria, 1996, 42: 233–242.
    HORVNAK M and SOTAK R. Localization of jumps of the point-distinguishing chromatic index of K n, n[J]. Discussiones Mathematicae Graph Theory, 1997, 17(2): 243–251. doi: 10.7151/dmgt.1051
    HORŇÁK M and ZAGAGLIA SALVI N. On the point -distinguishing chromatic index of K m, n[J]. ARS Combinatoria, 2006, 80: 75–85.
    ZAGAGLIA SALVI N. On the value of the point -distinguishing chromatic index of K n, n[J]. ARS Combinatoria, 1990, 29B: 235–244.
    CHEN Xiang’en. Point-distinguishing chromatic index of the union of paths[J]. Czechoslovak Mathematical Journal, 2014, 64(3): 629–640. doi: 10.1007/s10587-014-0123-8
    CHEN Xiang’en, GAO Yuping, and YAO Bing. Vertex-distinguishing IE-total colorings of complete bipartite graphs K m, n (m<n)[J]. Discussiones Mathematicae Graph Theory, 2013, 33(2): 289–306. doi: 10.7151/dmgt.1659
    许进. 极大平面图的结构与着色理论(1)色多项式递推公式与四色猜想[J]. 电子与信息学报, 2016, 38(4): 763–779. doi: 10.11999/JEIT160072

    XU Jin. Theory on the structure and coloring of maximal planar graphs (1) recursion formula of chromatic polynomial and four-color conjecture[J]. Journal of Electronics &Information Technology, 2016, 38(4): 763–779. doi: 10.11999/JEIT160072
    许进. 极大平面图的结构与着色理论(2)多米诺构形与扩缩运算[J]. 电子与信息学报, 2016, 38(6): 1271–1296. doi: 10.11999/JEIT160224

    XU Jin. Theory on structure and coloring of maximal planar graphs (2) Domino configurations and extending-contracting operations[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1271–1296. doi: 10.11999/JEIT160224
    许进. 极大平面图的结构与着色理论(3)纯树着色与唯一4-色极大平面图猜想[J]. 电子与信息学报, 2016, 38(6): 1328–1353. doi: 10.11999/JEIT160409

    XU Jin. Theory on structure and coloring of maximal planar graphs (3) purely tree-colorable and uniquely 4-colorable maximal planar graph conjectures[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1328–1353. doi: 10.11999/JEIT160409
    许进. 极大平面图的结构与着色理论(4)-运算与Kempe等价类[J]. 电子与信息学报, 2016, 38(7): 1557–1585. doi: 10.11999/JEIT160483

    XU Jin. Theory on structure and coloring of maximal planar graphs (4)-operations and Kempe equivalent classes[J]. Journal of Electronics &Information Technology, 2016, 38(7): 1557–1585. doi: 10.11999/JEIT160483
    XU Jin, LI Zepeng, and ZHU Enqiang. On purely tree-colorable planar graphs[J]. Information Processing Letter, 2016, 116(8): 532–536. doi: 10.1016/j.ipl.2016.03.011
    许进, 李泽鹏, 朱恩强. 极大平面图理论研究进展[J]. 计算机学报, 2015, 38(8): 1680–1704. doi: 10.11897/SP.J.1016.2015.01680

    XU Jin, LI Zepeng, and ZHU Enqiang. Research progress on the theory of maximal planar graphs[J]. Chinese Journal of Computers, 2015, 38(8): 1680–1704. doi: 10.11897/SP.J.1016.2015.01680
    陈祥恩, 李婷. (k,l)-递归极大平面图的结构[J]. 电子与信息学报, 2018, 40(9): 2281–2286. doi: 10.11999/JEIT171021

    CHEN Xiang’en and LI Ting. The structure of (k,l)-recursive maximal planar graph[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2281–2286. doi: 10.11999/JEIT171021
    LI Zepeng, ZHU Enqiang, SHAO Zehui, et al. Size of edge-critical uniquely 3-colorable planar graphs[J]. Discrete Mathematics, 2016, 339(4): 1242–1250. doi: 10.1016/j.disc.2015.11.009
    LI Zepeng, ZHU Enqiang, SHAO Zehui, et al. A note on uniquely 3-colourable planar graphs[J]. International Journal of Computer Mathematics, 2017, 94(5): 1028–1035. doi: 10.1080/00207160.2016.1167196
    ZHU Enqiang, LI Zepeng, SHAO Zehui, et al. Acyclically 4-colorable triangulations[J]. Information Processing Letters, 2016, 116(6): 401–408. doi: 10.1016/j.ipl.2015.12.005
  • 加载中
表(1)
计量
  • 文章访问数:  801
  • HTML全文浏览量:  375
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-28
  • 修回日期:  2020-08-25
  • 网络出版日期:  2020-09-04
  • 刊出日期:  2020-12-08

目录

    /

    返回文章
    返回