高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于金属销钉封装的Ka波段固态功率放大模块研究

孙健健 徐建华 成海峰 祝庆霖 韩煦

孙健健, 徐建华, 成海峰, 祝庆霖, 韩煦. 基于金属销钉封装的Ka波段固态功率放大模块研究[J]. 电子与信息学报, 2020, 42(12): 3074-3080. doi: 10.11999/JEIT190791
引用本文: 孙健健, 徐建华, 成海峰, 祝庆霖, 韩煦. 基于金属销钉封装的Ka波段固态功率放大模块研究[J]. 电子与信息学报, 2020, 42(12): 3074-3080. doi: 10.11999/JEIT190791
Jianjian SUN, Jianhua XU, Haifeng CHENG, Qinglin ZHU, Xu HAN. Research on Ka-band Solid-state Power Amplifier Module Packages Using a Lid of Nails[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3074-3080. doi: 10.11999/JEIT190791
Citation: Jianjian SUN, Jianhua XU, Haifeng CHENG, Qinglin ZHU, Xu HAN. Research on Ka-band Solid-state Power Amplifier Module Packages Using a Lid of Nails[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3074-3080. doi: 10.11999/JEIT190791

基于金属销钉封装的Ka波段固态功率放大模块研究

doi: 10.11999/JEIT190791
详细信息
    作者简介:

    孙健健:男,1993年生,硕士,研究方向为微波毫米波电路

    徐建华:男,1977年生,高级工程师,主要研究方向为微波毫米波电路

    成海峰:男,1983年生,高级工程师,主要研究方向为微波毫米波电路

    祝庆霖:男,1989年生,工程师,主要研究方向为微波毫米波电路

    韩煦:男,1985年生,高级工程师,主要研究方向为微波毫米波电路

    通讯作者:

    徐建华 xu_jh55suo@163.com

  • 中图分类号: TN772

Research on Ka-band Solid-state Power Amplifier Module Packages Using a Lid of Nails

  • 摘要: 为了抑制一定频带内的平行板和腔体谐振模式,提高功率放大器工作的稳定性。该文提出了一种人工磁导体(AMC)边界作为腔体封装的Ka波段固态功率放大模块。人工磁导体边界通过周期性金属销钉构成的电磁带隙(EBG)抑制结构实现。对Ka波段固态功率模块进行了设计、加工、装配和测试。由仿真和测试得到的S参数数据,详细地评估讨论了该封装的性能。通过对比其他封装结构,功率模块的无源测试结果证明金属销钉封装可以有效抑制腔体谐振,提高功放模块隔离度。功率模块的有源功率测试则表明金属销钉封装不会影响放大器输出功率。
  • 图  1  传统金属平板封装Ka波段固态功率模块3维模型

    图  2  波导到微带探针过渡尺寸

    图  3  波导到微带探针过渡结构S参数仿真结果

    图  4  Ka波段功放模块销钉封装结构

    图  5  销钉阵列平行面波导结构(剖面图)

    图  6  无限大销钉阵列平行面波导结构色散曲线

    图  7  Ka波段功率模块实物

    图  8  装配了石英探针的功率模块S参数仿真与测试结果

    图  9  金属销钉高度d参数扫描仿真结果

    图  10  包含芯片槽和不含芯片槽腔体S参数仿真结果

    图  11  Ka波段功率模块S参数测试结果

    图  12  3种封装下Ka波段功率模块饱和输出功率测试结果

    表  1  封装腔体本征模谐振频率仿真结果(GHz)

    包含销钉阵列不含销钉阵列
    25.131.8
    25.542.3
    26.752.8
    27.554.6
    49.856.4
    52.557.7
    下载: 导出CSV
  • 贾海昆, 池保勇. 硅基毫米波雷达芯片研究现状与发展[J]. 电子与信息学报, 2020, 42(1): 173–190. doi: 10.11999/JEIT190666

    JIA Haikun and CHI Baoyong. The status and trends of silicon-based millimeter-wave radar SoCs[J]. Journal of Electronics &Information Technology, 2020, 42(1): 173–190. doi: 10.11999/JEIT190666
    DIXON P. Cavity-resonance dampening[J]. IEEE Microwave Magazine, 2005, 6(2): 74–84. doi: 10.1109/MMW.2005.1491270
    WILLIAMS D F. Damping of the resonant modes of a rectangular metal package (MMICs)[J]. IEEE Transactions on Microwave Theory and Techniques, 1989, 37(1): 253–256. doi: 10.1109/22.20046
    KUANG Ken, KIM F, and CAHILL S S. RF and Microwave Microelectronics Packaging[M]. Boston: Springer, 2010: 3–19. doi: 10.1007/978-1-4419-0984-8.
    SIEVENPIPER D, ZHANG Lijun, BROAS R F J, et al. High-impedance electromagnetic surfaces with a forbidden frequency band[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2059–2074. doi: 10.1109/22.798001
    KILDAL P S, ALFONSO E, VALERO-NOGUEIRA A, et al. Local metamaterial-based waveguides in gaps between parallel metal plates[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 84–87. doi: 10.1109/LAWP.2008.2011147
    EBRAHIMPOURI M, RAJO-IGLESIAS E, SIPUS Z, et al. Cost-effective gap waveguide technology based on glide-symmetric holey EBG structures[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(2): 927–934. doi: 10.1109/TMTT.2017.2764091
    BAYAT-MAKOU N and KISHK A A. Realistic air-filled TEM printed parallel-plate waveguide based on ridge gap waveguide[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(5): 2128–2140. doi: 10.1109/TMTT.2018.2811487
    AHMADI B and BANAI A. Substrateless amplifier module realized by ridge gap waveguide technology for millimeter-wave applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(11): 3623–3630. doi: 10.1109/TMTT.2016.2607177
    ALI M M M and SEBAK A. Printed RGW circularly polarized differential feeding antenna array for 5G communications[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3151–3160. doi: 10.1109/TAP.2019.2900411
    DABAS T, GANGWAR D, KANAUJIA B K, et al. Mutual coupling reduction between elements of UWB MIMO antenna using small size uniplanar EBG exhibiting multiple stop bands[J]. AEU-International Journal of Electronics and Communications, 2018, 93: 32–38. doi: 10.1016/j.aeue.2018.05.033
    JAM S and SIMRUNI M. Performance enhancement of a compact wideband patch antenna array using EBG structures[J]. AEU-International Journal of Electronics and Communications, 2018, 89: 42–55. doi: 10.1016/j.aeue.2018.03.026
    VOSOOGH A, SORKHERIZI M S, ZAMAN A U, et al. An integrated ka-band diplexer-antenna array module based on gap waveguide technology with simple mechanical assembly and no electrical contact requirements[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(2): 962–972. doi: 10.1109/TMTT.2017.2757469
    王彦虎, 廖永波, 付晨阳. 新型电磁材料结构的微带天线设计[J]. 传感器与微系统, 2017, 36(1): 98–100, 104. doi: 10.13873/J.1000-9787(2017)01-0098-03

    WANG Yanhu, LIAO Yongbo, and FU chenyang. Design of microstrip antenna based on novel electromagnetic material structure[J]. Transducer and Microsystem Technologies, 2017, 36(1): 98–100, 104. doi: 10.13873/J.1000-9787(2017)01-0098-03
    BARTH S and IYER A K. A miniaturized uniplanar metamaterial-based EBG for parallel-plate mode suppression[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(4): 1176–1185. doi: 10.1109/TMTT.2016.2532870
    BRAZALEZ A A, ZAMAN A U, and KILDAL P S, et al. Improved microstrip filters using PMC packaging by lid of nails[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2(7): 1075–1084. doi: 10.1109/TCPMT.2012.2190931
    RAJO-IGLESIAS E, ZAMAN A U, and KILDAL P S. Parallel plate cavity mode suppression in microstrip circuit packages using a lid of nails[J]. IEEE Microwave and Wireless Components Letters, 2010, 20(1): 31–33. doi: 10.1109/LMWC.2009.2035960
    史凌峰, 王海鹏. 一种扩展蘑菇型EBG结构阻带带宽的新方法[J]. 电子与信息学报, 2012, 34(10): 2537–2540. doi: 10.3724/SP.J.1146.2012.00141

    SHI Lingfeng and WANG Haipeng. Novel method to broaden the stop-band width of the mushroom-like electromagnetic band gap structure[J]. Journal of Electronics &Information Technology, 2012, 34(10): 2537–2540. doi: 10.3724/SP.J.1146.2012.00141
    陈朋, 汝岩, 廖立科. 一种适用于同步开关噪声抑制的共面电磁带隙新结构[J]. 电子与信息学报, 2014, 36(11): 2775–2780. doi: 10.3724/SP.J.1146.2013.01987

    CHEN Peng, RU Yan, and LIAO Like. A novel planar electromagnetic band-gap structure for SSN suppression[J]. Journal of Electronics &Information Technology, 2014, 36(11): 2775–2780. doi: 10.3724/SP.J.1146.2013.01987
    JOO S H, KIM D Y, and LEE H Y. A S-bridged inductive electromagnetic bandgap power plane for suppression of ground bounce noise[J]. IEEE Microwave and Wireless Components Letters, 2007, 17(10): 709–711. doi: 10.1109/LMWC.2007.905604
    闫敦豹. 人工磁导体结构及其应用研究[D]. [博士论文], 国防科学技术大学, 2006: 43–72.

    YAN Dunbao. Study on artificial magnetic conductorsand applications[D]. [Ph.D. dissertation], National University of Defense Technology, 2006: 43–72.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1393
  • HTML全文浏览量:  833
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-16
  • 修回日期:  2020-05-24
  • 网络出版日期:  2020-07-14
  • 刊出日期:  2020-12-08

目录

    /

    返回文章
    返回