高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多服务低速率数字光载射频系统中的新型自动增益控制算法设计

李文 陈爱新 王学锋 陈远航 刘晓滨 姚宜东

李文, 陈爱新, 王学锋, 陈远航, 刘晓滨, 姚宜东. 多服务低速率数字光载射频系统中的新型自动增益控制算法设计[J]. 电子与信息学报, 2021, 43(4): 1090-1097. doi: 10.11999/JEIT190785
引用本文: 李文, 陈爱新, 王学锋, 陈远航, 刘晓滨, 姚宜东. 多服务低速率数字光载射频系统中的新型自动增益控制算法设计[J]. 电子与信息学报, 2021, 43(4): 1090-1097. doi: 10.11999/JEIT190785
Wen LI, Aixin CHEN, Xuefeng WANG, Yuanhang CHEN, Xiaobin LIU, Yidong YAO. Design of Novel Automatic Gain Control for Multi-service Low-bit Rate Digital Radio-over-Fibre System[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1090-1097. doi: 10.11999/JEIT190785
Citation: Wen LI, Aixin CHEN, Xuefeng WANG, Yuanhang CHEN, Xiaobin LIU, Yidong YAO. Design of Novel Automatic Gain Control for Multi-service Low-bit Rate Digital Radio-over-Fibre System[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1090-1097. doi: 10.11999/JEIT190785

多服务低速率数字光载射频系统中的新型自动增益控制算法设计

doi: 10.11999/JEIT190785
基金项目: 中国航天科技集团公司科技研发项目(天科研[2017]893号)
详细信息
    作者简介:

    李文:男,1988年生,博士生,研究方向为无线通信、数字信号处理

    陈爱新:男,1970年生,教授,博士生导师,研究方向为天线设计、电磁兼容

    王学锋:男,1974年生,研究员,博士生导师,研究方向为无线通信、光纤传感

    陈远航:男,1977年生,研究员,研究方向为卫星通信

    刘晓滨:男,1981年生,高级工程师,研究方向为卫星通信、计算机网络

    姚宜东:男,1984年生,高级工程师,研究方向为天线设计、射频电路

    通讯作者:

    李文 liwen5658@buaa.edu.cn

  • 中图分类号: TN929.531

Design of Novel Automatic Gain Control for Multi-service Low-bit Rate Digital Radio-over-Fibre System

Funds: The Innovation Research and Development Project of China Aerospace Science and Technology Corporation ([2017]893)
  • 摘要: 带通采样和数字信号处理技术使得数字光载射频(DRoF)通信系统在射频信号传输中具有显著优势,而且系统通过进一步采用数据压缩技术可实现多服务信号的低比特率传输。然而,系统进行数据压缩的同时会极大降低输入动态范围。基于对数据压缩参数的理论分析,该文提出一种新型快速两级自动增益控制(FST-AGC)算法。该算法采用周期内多阈值判定机制来调整链路增益,具有高稳定、准确和快速响应等特性。通过在数字域和模拟(RF)域进行两级自动增益控制,系统的输入动态范围大大提高。该算法被成功应用到能够同时支持3家移动运营商(MONs)所有服务的多服务低速率DRoF系统中。理论计算、软件仿真和系统测试结果都验证了该算法具有显著优势和良好性能。该算法可应用在其他各种新型网络通信系统中,如物联网(IoT)、射频识别(RFID)和未来的5G通信系统。
  • 图  1  多服务低速率DRoF系统架构

    图  2  FST-AGC算法结构框图

    图  3  主AGC环路结构框图

    图  4  从AGC环路结构框图

    图  5  系统实验平台架构

    图  6  系统在各种条件下的EVM测试曲线

    图  7  FST-AGC算法的性能仿真图

    表  1  主AGC环路中输出功率值及增益控制对应表

    序号信号功率估计值范围增益控制字
    7> (103)×upaATT_31~ATT_35
    6(102.5) ×upa~(103) ×upaATT_26~ATT_30
    5(102) ×upa~(102.5) ×upaATT_21~ATT_25
    4(101.5) ×upa~(102) ×upaATT_16~ATT_20
    3(101) ×upa~(101.5) ×upa aATT_11~ATT_15
    2(100.5) ×upa~(101) ×upaATT_6~ATT_10
    1upa~(100.5) ×upaATT_1~ATT_5
    0lowa~upaGain_0
    –1(10–0.5)×lowa~lowaGain_1~Gain_5
    –2(10–1) ×lowa~(10–0.5) ×lowaGain_6~Gain_10
    –3(10–1.5) ×lowa~(10–1) ×lowaGain_11~Gain_15
    –4(10–2) ×lowa~(10–1.5) ×lowaGain_16~Gain_20
    –5(10–2.5) ×lowa~(10–2) ×lowaGain_21~Gain_25
    –6(10–3) ×lowa~(10–2.5) ×lowaGain_26~Gain_30
    –7< (10–3) ×lowaGain_31~Gain_35
    下载: 导出CSV

    表  2  从AGC环路中输出功率值及增益控制字对应表

    序号信号功率估计值范围增益控制字
    1大于upbRF_ATT_1
    0lowb~upbRF_Gain_0
    –1(10–1.05)×lowb~lowbRF_Gain_1
    –2小于(10–1.05)×lowbRF_Gain_2
    下载: 导出CSV

    表  3  射频前端主要器件参数

    器件型号增益 (dB)P1dB(dBm)IP3(dBm)NF(dB)
    LNATQP3M902814.520.740.01.80
    ATTPE4302–31.5~034.052.01.50
    PGAMGA-684P817.622.032.40.56
    下载: 导出CSV

    表  4  FST-AGC参数取值

    参数含义取值
    fs系统时钟153.6 MHz
    K加权系数13107
    TD控制周期50
    α判定因子36
    Vmax饱和门限5000
    ref参考值160
    μ自定义系数1
    σLSB值8
    BADC采样位数16
    υMSB值0
    lowa主AGC下门限14
    upa主AGC上门限1000
    lowb从AGC下门限4
    upb从AGC上门限1000
    下载: 导出CSV
  • NOWEIR M, ZHOU Qiang, KWAN A, et al. Digitally linearized radio-over fiber transmitter architecture for cloud radio access network’s downlink[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(7): 3564–3574. doi: 10.1109/TMTT.2018.2819665
    AISSAOUI K, MHATLI S, and ATTIA R. High data rate multiband GFDM over long-haul standard single mode fiber communication[C]. 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 2019: 1764–1766. doi: 10.1109/IWCMC.2019.8766716.
    NOWEIR M, HELAOUI M, TITTEL W, et al. Carrier aggregated radio-over-fiber downlink for achieving 2Gbps for 5G applications[J]. IEEE Access, 2019, 7: 3136–3142. doi: 10.1109/ACCESS.2018.2888820
    LI Tongyun, PENTY R V, and WHITE I H. Novel digital radio over fibre for 4G-LTE[C]. 2015 IEEE International Conference on Communication Workshop (ICCW), London, UK, 2015: 312–317. doi: 10.1109/ICCW.2015.7247197.
    LIU Jun, LUO Zhongqiang, and XIONG Xingzhong. Low-resolution ADCs for wireless communication: A comprehensive survey[J]. IEEE Access, 2019, 7: 91291–91324. doi: 10.1109/ACCESS.2019.2927891
    SHEN Yuyao, WANG Yongqing, SHENG Dewei, et al. Digital AGC based on coherent adjustment cycle for DSSS receiver[J]. China Communications, 2015, 12(2): 95–106. doi: 10.1109/CC.2015.7084405
    徐化, 姚远, 石寅, 等. 一种新型的5 GHz自适应偏置及可变增益低噪声放大器[J]. 电子与信息学报, 2006, 28(8): 1521–1525.

    XU Hua, YAO Yuan, SHI Yin, et al. A new 5 GHz adaptively-biased and variable gain low noise amplifier[J]. Journal of Electronics &Information Technology, 2006, 28(8): 1521–1525.
    WU Hao and LI Jun. Analysis and mitigation of ICI due to gain adjustment in OFDM systems[J]. IEEE Access, 2019, 7: 21807–21815. doi: 10.1109/ACCESS.2019.2898457
    NALLATHAMBI G and PRINCIPE J. Time based gain control for the analog to pulse converter[C]. 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, Canada, 2017: 216–219. doi: 10.1109/GlobalSIP.2017.8308635.
    HSIEH Y K, WU Yaru, KU P C, et al. An analog on-line gain calibration loop for RF amplifiers[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(8): 2003–2012. doi: 10.1109/TCSI.2015.2440736
    PRASOLOV A. Modeling of digital AGC with multi-signal impact and adaptation of the reference level[C]. 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT), Moscow, Russia, 2018: 1–4. doi: 10.1109/MWENT.2018.8337173.
    ZHANG Hongsheng, WANG Guoyu, and LU Mingying. Analysis and implementation of digital automatic gain control for DAB baseband decoder[J]. IEEE Transactions on Consumer Electronics, 2011, 57(2): 327–334. doi: 10.1109/TCE.2011.5955163
    GUO Yongxin, PHAM V H, YEE M L, et al. Improved radio-over-fiber transponder with multistage automatic gain control[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(11): 2816–2823. doi: 10.1109/TMTT.2009.2032478
    陈家旭, 管恩义, 李文, 等. 数字通信系统中新型自动增益控制方法设计[J]. 导航与控制, 2016, 15(6): 57–61. doi: 10.3969/j.issn.1674-5558.2016.06.010

    CHEN Jiaxu, GUAN Enyi, LI Wen, et al. Design of a novel automatic gain control method for digital communication system[J]. Navigation and Control, 2016, 15(6): 57–61. doi: 10.3969/j.issn.1674-5558.2016.06.010
    TISSERAND E and BERVILLE Y. Design and implementation of a new digital automatic gain control[J]. Electronics Letters, 2016, 52(22): 1847–1849. doi: 10.1049/el.2016.1398
    ZHANG Naikang, WEN Zhiping, HOU Xunping, et al. Digital automatic gain control design with large dynamic range in wireless communication receivers[C]. 2017 IEEE 17th International Conference on Communication Technology (ICCT), Chengdu, China, 2017: 1402–1406. doi: 10.1109/ICCT.2017.8359863.
    刘冰凡, 陈伯孝. 基于OFDM-LFM信号的MIMO雷达通信一体化信号共享设计研究[J]. 电子与信息学报, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547

    LIU Bingfan and CHEN Baixiao. Integration of MIMO radar and communication with OFDM-LFM signals[J]. Journal of Electronics &Information Technology, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547
    吕晓德, 张汉良, 杨璟茂, 等. 基于LTE信号的外辐射源雷达副峰特性及抑制方法研究[J]. 电子与信息学报, 2018, 40(10): 2498–2505. doi: 10.11999/JEIT180904

    LÜ Xiaode, ZHANG Hanliang, YANG Jingmao, et al. Research on characteristics and suppression methods of side peaks of passive radar based on LTE signal[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2498–2505. doi: 10.11999/JEIT180904
    程佩青. 数字信号处理教程[M]. 2版. 北京: 清华大学出版社, 2001.

    CHENG Peiqing. Discrese Signal Processing[M]. 2nd ed. Beijing: Tsinghua University Press, 2001.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  734
  • HTML全文浏览量:  268
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-16
  • 修回日期:  2021-01-24
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-04-20

目录

    /

    返回文章
    返回