高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于半监督学习的SAR目标检测网络

杜兰 魏迪 李璐 郭昱辰

杜兰, 魏迪, 李璐, 郭昱辰. 基于半监督学习的SAR目标检测网络[J]. 电子与信息学报, 2020, 42(1): 154-163. doi: 10.11999/JEIT190783
引用本文: 杜兰, 魏迪, 李璐, 郭昱辰. 基于半监督学习的SAR目标检测网络[J]. 电子与信息学报, 2020, 42(1): 154-163. doi: 10.11999/JEIT190783
Lan DU, Di WEI, Lu LI, Yuchen GUO. SAR Target Detection Network via Semi-supervised Learning[J]. Journal of Electronics & Information Technology, 2020, 42(1): 154-163. doi: 10.11999/JEIT190783
Citation: Lan DU, Di WEI, Lu LI, Yuchen GUO. SAR Target Detection Network via Semi-supervised Learning[J]. Journal of Electronics & Information Technology, 2020, 42(1): 154-163. doi: 10.11999/JEIT190783

基于半监督学习的SAR目标检测网络

doi: 10.11999/JEIT190783
基金项目: 国家自然科学基金(61771362, U1833203, 61671354),高等学校学科创新引智计划(B18039),陕西省重点科技创新团队计划
详细信息
    作者简介:

    杜兰:女,1980年生,教授,博士生导师,研究方向为统计信号处理、雷达信号处理、机器学习及其在雷达目标检测与识别方面的应用

    魏迪:男,1995年生,硕士生,研究方向为雷达目标检测与识别,机器学习等

    李璐:女,1992年生,博士生,研究方向为机器学习和目标检测识别等

    郭昱辰:男,1992年生,博士生,研究方向为雷达目标检测与识别

    通讯作者:

    杜兰 dulan@mail.xidian.edu.cn

  • 中图分类号: TN957.51

SAR Target Detection Network via Semi-supervised Learning

Funds: The National Science Foundation of China (61771362, U1833203, 61671354), 111 Project (B18039), Shaanxi Provience Innovation Team Project
  • 摘要:

    现有的基于卷积神经网络(CNN)的合成孔径雷达(SAR)图像目标检测算法依赖于大量切片级标记的样本,然而对SAR图像进行切片级标记需要耗费大量的人力和物力。相对于切片级标记,仅标记图像中是否含有目标的图像级标记较为容易。该文利用少量切片级标记的样本和大量图像级标记的样本,提出一种基于卷积神经网络的半监督SAR图像目标检测方法。该方法的目标检测网络由候选区域提取网络和检测网络组成。半监督训练过程中,首先使用切片级标记的样本训练目标检测网络,训练收敛后输出的候选切片构成候选区域集;然后将图像级标记的杂波样本输入网络,将输出的负切片加入候选区域集;接着将图像级标记的目标样本也输入网络,对输出结果中的正负切片进行挑选并加入候选区域集;最后使用更新后的候选区域集训练检测网络。更新候选区域集和训练检测网络交替迭代直至收敛。基于实测数据的实验结果证明,所提方法的性能与使用全部样本进行切片级标记的全监督方法的性能相差不大。

  • 图  1  半监督SAR图像目标检测方法

    图  2  特征提取网络

    图  3  数据集示例

    图  4  MiniSAR数据集:Gaussian-CFAR的检测结果

    图  5  MiniSAR数据集:Faster R-CNN-少部分切片级标记的检测结果

    图  6  MiniSAR数据集:Faster R-CNN-全部切片级标记的检测结果

    图  7  MiniSAR数据集:文献[14]方法的检测结果

    图  8  MiniSAR数据集:文献[15]方法的检测结果

    图  9  MiniSAR数据集:本文方法的检测结果

    图  10  FARADSAR数据集:Gaussian-CFAR的检测结果

    图  11  FARADSAR数据集:Faster R-CNN-少部分切片级标记的检测结果

    图  12  FARADSAR数据集:Faster R-CNN-全部切片级标记的检测结果

    图  13  FARADSAR数据集:文献[14]方法的检测结果

    图  14  FARADSAR数据集:文献[15]方法的检测结果

    图  15  FARADSAR数据集:本文方法的检测结果

    表  1  不同方案的实验结果

    负包数量挑选的切片$P$$R$F1-score
    0正切片0.63970.75000.6905
    负切片0.88330.45690.6023
    正切片+负切片0.73870.70690.7225
    10正切片0.67970.75000.7131
    负切片0.79170.49140.6064
    正切片+负切片0.75730.67240.7123
    20正切片0.76580.73280.7489
    负切片0.83820.49140.6196
    正切片+负切片0.81370.71550.7615
    30正切片0.82020.62930.7122
    负切片0.84130.45690.5922
    正切片+负切片0.86750.62070.7236
    40正切片0.81110.62930.7087
    负切片0.86670.44830.5909
    正切片+负切片0.83520.65520.7343
    下载: 导出CSV

    表  2  不同方法的实验结果

    不同方法MiniSAR数据集FARADSAR数据集
    $P$$R$F1-score$P$$R$F1-score
    Gaussian-CFAR0.37890.79660.51350.28130.46710.3512
    Faster R-CNN-少部分切片级标记0.64550.61210.62830.73700.88130.8027
    Faster R-CNN-全部切片级标记0.80730.75860.78220.77600.94790.8534
    文献[14]方法0.58140.98060.72850.45060.73250.5580
    文献[15]方法0.46990.74800.57720.37440.79450.5090
    本文方法0.81370.71550.76150.80350.88130.8406
    下载: 导出CSV
  • NOVAK L M, BURL M C, and IRVING W W. Optimal polarimetric processing for enhanced target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 234–244. doi: 10.1109/7.249129
    XING X W, CHEN Z L, ZOU H X, et al. A fast algorithm based on two-stage CFAR for detecting ships in SAR images[C]. The 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xi’an, China, 2009: 506–509. doi: 10.1109/APSAR.2009.5374119.
    LENG Xiangguang, JI Kefeng, YANG Kai, et al. A bilateral CFAR algorithm for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1536–1540. doi: 10.1109/LGRS.2015.2412174
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    HINTON G E and SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504–507. doi: 10.1126/science.1127647
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv: 1409.1556, 2014.
    SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587. doi: 10.1109/CVPR.2014.81.
    GIRSHICK R. Fast R-CNN[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448. doi: 10.1109/ICCV.2015.169.
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. The 28th International Conference on Neural Information Processing Systems, Montréal, Canada, 2015: 91–99.
    杜兰, 刘彬, 王燕, 等. 基于卷积神经网络的SAR图像目标检测算法[J]. 电子与信息学报, 2016, 38(12): 3018–3025. doi: 10.11999/JEIT161032

    DU Lan, LIU Bin, WANG Yan, et al. Target detection method based on convolutional neural network for SAR image[J]. Journal of Electronics &Information Technology, 2016, 38(12): 3018–3025. doi: 10.11999/JEIT161032
    ROSENBERG C, HEBERT M, and SCHNEIDERMAN H. Semi-supervised self-training of object detection models[C]. The 7th IEEE Workshops on Applications of Computer Vision, Breckenridge, USA, 2005: 29–36. doi: 10.1109/ACVMOT.2005.107.
    ZHANG Fan, DU Bo, ZHANG Liangpei, et al. Weakly supervised learning based on coupled convolutional neural networks for aircraft detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5553–5563. doi: 10.1109/TGRS.2016.2569141
    IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 448–456.
    GLOROT X, BORDES A, and BENGIO Y. Deep sparse rectifier neural networks[C]. The 14th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2011: 315–323.
    GUTIERREZ D. MiniSAR: A review of 4-inch and 1-foot resolution Ku-band imagery[EB/OL]. https://www.sandia.gov/radar/Web/images/SAND2005-3706P-miniSAR-flight-SAR-images.pdf, 2005.
    FARADSAR public Release Data[EB/OL]. https://www.sandia.gov/radar/complex_data/FARAD_KA_BAND.zip.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  4947
  • HTML全文浏览量:  2249
  • PDF下载量:  366
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-12
  • 修回日期:  2019-12-05
  • 网络出版日期:  2019-12-09
  • 刊出日期:  2020-01-21

目录

    /

    返回文章
    返回