ADS-B Anomalous Data Detection Model Based on PSO-MKSVDD
-
摘要: 广播式自动相关监视(ADS-B)作为新一代空中交通管理(ATM)通信协议,是未来空管监视系统的关键技术。目前,由于ADS-B采用明文格式广播发送数据,其安全性问题受到挑战。针对ADS-B易受到的欺骗干扰,该文将ADS-B位置数据和同步的二次雷达(SSR)数据作差,将两者的差值作为样本数据。利用多核支持向量数据描述(MKSVDD)训练样本,得到了超球体分类器,此超球体分类器能检测出ADS-B测试样本中的异常数据。并且,通过粒子群算法(PSO)优化了GaussLapl和GaussTanh两种MKSVDD的惩罚因子、多核核函数系数以及核参数,提高了异常数据检测性能。实验结果表明,对于随机位置偏移、固定位置偏移、拒绝服务(DOS)攻击和重放攻击,粒子群优化多核支持向量数据描述(PSO-MKSVDD)模型能检测出这4种攻击类型的异常数据。且相较于其他机器学习和深度学习方法,该模型的适应性更好,异常检测的召回率和检测率更优。证明该模型可用于ADS-B异常数据的检测。
-
关键词:
- 广播式自动相关监视 /
- 空中交通管理 /
- 异常检测 /
- 多核支持向量数据描述 /
- 粒子群优化
Abstract: As a new generation of Air Traffic Management(ATM) communication protocol, Automatic Dependent Surveillance-Broadcast(ADS-B) is the key technology of ATM monitoring system in the future. At present, the security of ADS-B is challenged because it broadcasts data in plaintext format. Because ADS-B is susceptible to spoofing, the difference between ADS-B position data and synchronous Secondary Surveillance Radar(SSR) data is taken as sample data. Using Multi-Kernel Support Vector Data Description(MKSVDD) to train samples, a hypersphere classifier is obtained, which can detect anomalous data in ADS-B test samples. In addition, Particle Swarm Optimization (PSO) is used to optimize GaussLapl and GaussTanh MKSVDD penalty factors, coefficients of multi-kernel functions and kernel parameters.The performance of anomaly detection is improved. Experimental results show that PSO-MKSVDD can detect anomalous data of random position deviation, fixed position deviation, Denial Of Service(DOS) attack and replay attack. In addition, compared with other machine learning and deep learning methods, this model has better adaptability and better recall rate and detection rate of anomaly detection.It is proved that this model can be used to detect ADS-B anomalous data. -
表 1 样本分类结果表
实际情况 预测结果 正例 负例 正例 ${\rm{TP}}$(真正例) ${\rm{FN}}$(假负例) 负例 ${\rm{FP}}$(假正例) ${\rm{TN}}$(真负例) 表 2 异常检测对比表(%)
SVDD GaussLapl GaussTanh 随机位置偏移 召回率 94.0 95.2 94.8 检测率 89.2 93.6 92.0 固定位置偏移 召回率 94.8 95.6 96.0 检测率 94.4 96.4 97.2 DOS攻击 召回率 94.8 96.0 95.2 检测率 100.0 100.0 100.0 重放攻击 召回率 94.8 96.0 95.6 检测率 98.4 99.2 98.9 表 3 各种异常检测方法结果对比(%)
LSTM SVDD LSTM-encoder-decoder seq2seq GaussLapl GaussTanh 随机位置偏移 召回率 85.6 94.0 90.3 91.7 95.2 94.8 检测率 87.0 89.2 89.8 90.6 93.6 92.0 固定位置偏移 召回率 84.2 94.8 93.8 91.0 95.6 96.0 检测率 72.1 94.4 79.4 82.4 96.4 97.2 DOS攻击 召回率 87.5 94.8 93.7 94.4 96.0 95.2 检测率 92.6 100.0 95.2 95.6 100.0 100.0 重放攻击 召回率 85.7 94.8 92.0 91.6 96.0 95.6 检测率 88.2 98.4 93.6 94.4 99.2 98.9 -
STROHMEIER M, SCHAFER M, LENDERS V, et al. Realities and challenges of nextgen air traffic management: The case of ADS-B[J]. IEEE Communications Magazine, 2014, 52(5): 111–118. doi: 10.1109/MCOM.2014.6815901 ZHANG Jun, LIU Wei, and ZHU Yanbo. Study of ADS-B data evaluation[J]. Chinese Journal of Aeronautics, 2011, 24(4): 461–466. doi: 10.1016/s1000-9361(11)60053-8 MCCALLIE D, BUTTS J, and MILLS R. Security analysis of the ADS-B implementation in the next generation air transportation system[J]. International Journal of Critical Infrastructure Protection, 2011, 4(2): 78–87. doi: 10.1016/j.ijcip.2011.06.001 STROHMEIER M, LENDERS V, and MARTINOVIC I. On the security of the automatic dependent surveillance-broadcast protocol[J]. IEEE Communications Surveys & Tutorials, 2015, 17(2): 1066–1087. doi: 10.1109/comst.2014.2365951 WESSON K D, HUMPHREYS T E, and EVANS B L. Can cryptography secure next generation air traffic surveillance?[J/OL]. IEEE Security & Privacy. http://radionavlab.ae.utexas.edu/images/stories/files/papers/adsb_for_submission.pdf, 2014. BAEK J, BYON Y J, HABLEEL E, et al. Making air traffic surveillance more reliable: A new authentication framework for automatic dependent surveillance-broadcast (ADS-B) based on online/offline identity-based signature[J]. Security and Communication Networks, 2015, 8(5): 740–750. doi: 10.1002/sec.1021 MONTEIRO M. Detecting malicious ADS-B broadcasts using wide area multilateration[C]. The IEEE/AIAA 34th Digital Avionics Systems Conference, Prague, Czekh, 2015. doi: 10.1109/DASC.2015.7311579. NIJSURE Y A, KADDOUM G, GAGNON G, et al. Adaptive air-to-ground secure communication system based on ADS-B and wide-area multilateration[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5): 3150–3165. doi: 10.1109/TVT.2015.2438171 SUN J, ELLERBROEK J, and HOEKSTRA J M. Modeling aircraft performance parameters with open ADS-B data[C]. The 12th USA/Europe Air Traffic Management Research and Development Seminar, Seattle, USA, 2017. HABLER E and SHABTAI A. Using LSTM encoder-decoder algorithm for detecting anomalous ADS-B Messages[J]. Computers & Security, 2018, 78: 155–173. doi: 10.1016/j.cose.2018.07.004 丁建立, 邹云开, 王静, 等. 基于深度学习的ADS-B异常数据检测模型[J]. 航空学报, 2019, 40(12): 323220. doi: 10.7527/S1000-6893.2019.23220DING Jianli, ZOU Yunkai, WANG Jing, et al. ADS-B anomaly data detection model based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 323220. doi: 10.7527/S1000-6893.2019.23220 王振昊, 王布宏. 基于SVDD的ADS-B异常数据检测[J]. 河北大学学报: 自然科学版, 2019, 39(3): 323–329. doi: 10.3969/j.issn.1000-1565.2019.03.015WANG Zhenhao and WANG Buhong. ADS-B anomaly data detection based on SVDD[J]. Journal of HeBei University:Natural Science Edition, 2019, 39(3): 323–329. doi: 10.3969/j.issn.1000-1565.2019.03.015 TAX D M J and DUIN R P W. Support vector data description[J]. Machine Language, 2004, 54(1): 45–66. doi: 10.1023/b:Mach.0000008084.60811.49 GÖNEN M, and ALPAYDIN E. Multiple kernel learning algorithms[J]. Journal of Machine Learning Research, 2011, 12: 2211–2268. ÖZÖĞÜR-AKYÜZ S and WEBER G W. On numerical optimization theory of infinite kernel learning[J]. Journal of Global Optimization, 2010, 48(2): 215–239. doi: 10.1007/s10898-009-9488-x 殷礼胜, 唐圣期, 李胜, 等. 基于整合移动平均自回归和遗传粒子群优化小波神经网络组合模型的交通流预测[J]. 电子与信息学报, 2019, 41(9): 2273–2279. doi: 10.11999/JEIT181073YIN Lisheng, TANG Shengqi, LI Sheng, et al. Traffic flow prediction based on hybrid model of auto-regressive integrated moving average and genetic particle swarm optimization wavelet neural network[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2273–2279. doi: 10.11999/JEIT181073 钱亚冠, 卢红波, 纪守领, 等. 基于粒子群优化的对抗样本生成算法[J]. 电子与信息学报, 2019, 41(7): 1658–1665. doi: 10.11999/JEIT180777QIAN Yaguan, LU Hongbo, JI shouling, et al. Adversarial example generation based on particle swarm optimization[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1658–1665. doi: 10.11999/JEIT180777 https://opensky-network.org/.