高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

显著性背景感知的多尺度红外行人检测方法

赵斌 王春平 付强

赵斌, 王春平, 付强. 显著性背景感知的多尺度红外行人检测方法[J]. 电子与信息学报, 2020, 42(10): 2524-2532. doi: 10.11999/JEIT190761
引用本文: 赵斌, 王春平, 付强. 显著性背景感知的多尺度红外行人检测方法[J]. 电子与信息学报, 2020, 42(10): 2524-2532. doi: 10.11999/JEIT190761
Bin ZHAO, Chunping WANG, Qiang FU. Multi-scale Pedestrian Detection in Infrared Images with Salient Background-awareness[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2524-2532. doi: 10.11999/JEIT190761
Citation: Bin ZHAO, Chunping WANG, Qiang FU. Multi-scale Pedestrian Detection in Infrared Images with Salient Background-awareness[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2524-2532. doi: 10.11999/JEIT190761

显著性背景感知的多尺度红外行人检测方法

doi: 10.11999/JEIT190761
详细信息
    作者简介:

    赵斌:男,1990年生,博士生,研究方向为深度学习、目标检测

    王春平:男,1965年生,博士生导师,研究方向为图像处理、火力控制理论与应用

    付强:男,1981年生,讲师,博士,研究方向为计算机视觉、网络化火控与指控技术

    通讯作者:

    王春平 wang_c_p@163.com

  • 中图分类号: TN215

Multi-scale Pedestrian Detection in Infrared Images with Salient Background-awareness

  • 摘要: 超大视场(U-FOV)红外成像系统探测范围大、不受光照限制,但存在尺度多样、小目标丰富的特点。为此该文提出一种具备背景感知能力的多尺度红外行人检测方法,在提高小目标检测性能的同时,减少冗余计算。首先,构建了4尺度的特征金字塔网络分别独立预测目标,补充高分辨率细节特征。其次,在特征金字塔结构的横向连接中融入注意力模块,产生显著性特征,抑制不相关区域的特征响应、突出图像局部目标特征。最后,在显著性系数的基础上构建了锚框掩膜生成子网络,约束锚框位置,排除平坦背景,提高处理效率。实验结果表明,显著性生成子网络仅增加5.94%的处理时间,具备轻量特性;超大视场(U-FOV)红外行人数据集上的识别准确率达到了93.20%,比YOLOv3高了26.49%;锚框约束策略能节约处理时间18.05%。重构模型具有轻量性和高准确性,适合于检测超大视场中的多尺度红外目标。
  • 图  1  超大视场红外图像行人特性

    图  2  多尺度红外行人检测网络结构

    图  3  注意力模块结构

    图  4  显著性特征与卷积特征融合方法

    图  5  锚框掩膜生成过程

    图  6  不同输入图像的锚框掩膜

    图  7  不同二值化阈值下的锚框掩膜

    图  8  红外行人检测可视化结果

    表  1  不同IoU阈值下的行人检测平均准确率

    方法主干网络训练集平均准确率(AP)
    IoU=0.3IoU=0.45IoU=0.5IoU=0.7
    Faster R-CNNResNet101U-FOV0.5932
    SSDMobilenet_v1U-FOV0.5584
    R-FCNResNet101U-FOV0.6312
    CSPResnet50U-FOV0.8414
    YOLOv3Darknet53U-FOV0.65950.66710.66280.6461
    YOLOv3+FSDarknet53U-FOV0.88800.88700.88280.8511
    YOLOv3+FSDarknet53Caltech+U-FOV0.90570.90780.90840.8961
    本文方法Darknet53Caltech+U-FOV0.92010.93200.93150.9107
    下载: 导出CSV

    表  2  参数量对比

    方法总参数量可训练参数量不可训练参数量
    YOLOv3615763426152373452608
    本文方法648619766480629655680
    下载: 导出CSV

    表  3  U-FOV测试集图像总处理时间及处理帧速

    方法YOLOv3YOLOv3+AttentionFS+Attention本文方法
    总时间(s)90.3595.72125.39107.25
    处理帧率7.326.915.276.16
    下载: 导出CSV
  • BLOISI D D, PREVITALI F, PENNISI A, et al. Enhancing automatic maritime surveillance systems with visual information[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(4): 824–833. doi: 10.1109/TITS.2016.2591321
    KANG J K, HONG H G, and PARK K R. Pedestrian detection based on adaptive selection of visible light or far-infrared light camera image by fuzzy inference system and convolutional neural network-based verification[J]. Sensors, 2017, 17(7): 1598. doi: 10.3390/s17071598
    KIM S, SONG W J, and KIM S H. Infrared variation optimized deep convolutional neural network for robust automatic ground target recognition[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 195–202. doi: 10.1109/CVPRW.2017.30.
    王晨, 汤心溢, 高思莉. 基于人眼视觉的红外图像增强算法研究[J]. 激光与红外, 2017, 47(1): 114–118. doi: 10.3969/j.issn.1001-5078.2017.01.022

    WANG Chen, TANG Xinyi, and GAO Sili. Infrared image enhancement algorithm based on human vision[J]. Laser &Infrared, 2017, 47(1): 114–118. doi: 10.3969/j.issn.1001-5078.2017.01.022
    MUNDER S, SCHNORR C, and GAVRILA D M. Pedestrian detection and tracking using a mixture of view-based shape-texture models[J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(2): 333–343. doi: 10.1109/TITS.2008.922943
    DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 886–893. doi: 10.1109/CVPR.2005.177.
    ZHANG Shanshan, BAUCKHAGE C, and CREMERS A B. Informed haar-like features improve pedestrian detection[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 947–954. doi: 10.1109/CVPR.2014.126.
    WATANABE T and ITO S. Two co-occurrence histogram features using gradient orientations and local binary patterns for pedestrian detection[C]. The 2nd IAPR Asian Conference on Pattern Recognition, Naha, Japan, 2013: 415–419. doi: 10.1109/ACPR.2013.117.
    余春艳, 徐小丹, 钟诗俊. 面向显著性目标检测的SSD改进模型[J]. 电子与信息学报, 2018, 40(11): 2554–2561. doi: 10.11999/JEIT180118

    YU Chunyan, XU Xiaodan, and ZHONG Shijun. An improved SSD model for saliency object detection[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2554–2561. doi: 10.11999/JEIT180118
    LIU Songtao, HUANG Di, and WANG Yunhong. Adaptive NMS: Refining pedestrian detection in a crowd[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6452–6461. doi: 10.1109/CVPR.2019.00662.
    LIU Wei, LIAO Shengcai, REN Weiqiang, et al. Center and scale prediction: A box-free approach for pedestrian and face detection[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Los Angeles, USA, 2019: 5187–5196.
    车凯, 向郑涛, 陈宇峰, 等. 基于改进Fast R-CNN的红外图像行人检测研究[J]. 红外技术, 2018, 40(6): 578–584. doi: 10.11846/j.issn.1001_8891.201806010

    CHE Kai, XIANG Zhengtao, CHEN Yufeng, et al. Research on infrared image pedestrian detection based on improved fast R-CNN[J]. Infrared Technology, 2018, 40(6): 578–584. doi: 10.11846/j.issn.1001_8891.201806010
    王殿伟, 何衍辉, 李大湘, 等. 改进的YOLOv3红外视频图像行人检测算法[J]. 西安邮电大学学报, 2018, 23(4): 48–52. doi: 10.13682/j.issn.2095-6533.2018.04.008

    WANG Dianwei, HE Yanhui, LI Daxiang, et al. An improved infrared video image pedestrian detection algorithm[J]. Journal of Xi'an University of Posts and Telecommunications, 2018, 23(4): 48–52. doi: 10.13682/j.issn.2095-6533.2018.04.008
    GIRSHICK R. Fast R-CNN[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448. doi: 10.1109/ICCV.2015.169.
    REDMON J and FARHADI A. YOLOv3: An incremental improvement[EB/OL]. http://arxiv.org/abs/1804.02767, 2018.
    郭智, 宋萍, 张义, 等. 基于深度卷积神经网络的遥感图像飞机目标检测方法[J]. 电子与信息学报, 2018, 40(11): 2684–2690. doi: 10.11999/JEIT180117

    GUO Zhi, SONG Ping, ZHANG Yi, et al. Aircraft detection method based on deep convolutional neural network for remote sensing images[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2684–2690. doi: 10.11999/JEIT180117
    CHEN Long, ZHANG Hanwang, XIAO Jun, et al. SCA-CNN: Spatial and channel-wise attention in convolutional networks for image captioning[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6298–6306. doi: 10.1109/CVPR.2017.667.
    WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
    DOLLÁR P, WOJEK C, SCHIELE B, et al. Pedestrian detection: An evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 743–761. doi: 10.1109/TPAMI.2011.155
    FU Chengyang, LIU Wei, RANGA A, et al. DSSD: Deconvolutional single shot detector[J]. arXiv, 2017, 1701.06659.
    HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988. doi: 10.1109/ICCV.2017.322.
    BERG A, AHLBERG J, and FELSBERG M. A thermal object tracking benchmark[C]. The 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance, Karlsruhe, Germany, 2015: 1–6. doi: 10.1109/AVSS.2015.7301772.
    LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN: Object detection via region-based fully convolutional networks[C]. Advances in Neural Information Processing Systems, Barcelona, Spain, 2016: 379–387.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  2369
  • HTML全文浏览量:  2034
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-30
  • 修回日期:  2020-05-13
  • 网络出版日期:  2020-05-20
  • 刊出日期:  2020-10-13

目录

    /

    返回文章
    返回