Loading [MathJax]/jax/output/HTML-CSS/jax.js
高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性光网络中时延感知的降级恢复路由与频谱分配算法

于存谦 张黎 何荣希 李靖宇

于存谦, 张黎, 何荣希, 李靖宇. 弹性光网络中时延感知的降级恢复路由与频谱分配算法[J]. 电子与信息学报, 2020, 42(10): 2420-2428. doi: 10.11999/JEIT190759
引用本文: 于存谦, 张黎, 何荣希, 李靖宇. 弹性光网络中时延感知的降级恢复路由与频谱分配算法[J]. 电子与信息学报, 2020, 42(10): 2420-2428. doi: 10.11999/JEIT190759
Ren Bo, Shi Long-Fei, Wang Hong-Jun, Li Yong-Zhen, Wang Guo-Yu. Investigation on of Polarization Filtering Scheme to Suppress GSM Interference in Radar Main Beam[J]. Journal of Electronics & Information Technology, 2014, 36(2): 459-464. doi: 10.3724/SP.J.1146.2013.00257
Citation: Cunqian YU, Li ZHANG, Rongxi HE, Jingyu LI. Delay-aware Degradation-recovery Routing and Spectrum Allocation Algorithm in Elastic Optical Networks[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2420-2428. doi: 10.11999/JEIT190759

弹性光网络中时延感知的降级恢复路由与频谱分配算法

doi: 10.11999/JEIT190759
基金项目: 国家自然科学基金(61371091, 61801074),中国博士后科学面上基金(2019M661074),辽宁省自然科学基金(2019-BS-021),中央高校基本科研业务费(3132020205, 3132019221)
详细信息
    作者简介:

    于存谦:男,1983年生,博士,副教授,研究方向为光数据中心网络

    张黎:女,1992年生,硕士,研究方向为弹性光网络

    何荣希:男,1971年生,博士,教授,研究方向为光网络和无线网络技术

    李靖宇:女,1995年生,硕士生,研究方向光数据中心网络

    通讯作者:

    何荣希 hrx@dlmu.edu.cn

  • 中图分类号: TN929.11

Delay-aware Degradation-recovery Routing and Spectrum Allocation Algorithm in Elastic Optical Networks

Funds: The National Natural Science Foundation of China (61371091, 61801074), Chian General Fundation for Postdoctoral Science (2019M661074), The Natural Science Foundation of Liaoning Province (2019-BS-021), The Fundamental Research Funds for The Central Universities (3132020205, 3132019221)
  • 摘要: 移动云计算、人工智能(AI)、5G等新兴技术应用促使弹性光网络(EON)在骨干传输网中发挥更重要的角色,降级服务(DS)技术为降低EON的业务阻塞率、提高频谱利用率提供了新途径。该文首先对现有DS算法的资源分配不公、忽略低等级业务的体验质量(QoE)等问题,建立了以最小化降级频次、降级等级与传输时延损失(TDL)为联合优化目标的混合整数线性规划(MILP)模型,并提出一种时延感知的降级恢复路由与频谱分配(DDR-RSA)算法。为提高降级业务的QoE和运营商收益,在算法的最优DS窗口选择阶段中融入降级恢复策略,在保障传输数据量不变的前提下,将降级业务向空闲频域复原,从而提高频谱效率、减小降级业务TDL和最大化网络收益。最后,通过仿真证明了所提算法在业务阻塞率、网络收益和降级业务成功率等方面的优势。
  • 图  1  降级恢复举例

    图  2  4种算法的数据量阻塞率

    图  3  3种算法的降级服务成功率

    图  4  3种算法的平均延迟时间

    图  5  4种算法的网络收益

    图  6  3种算法的降级等级占比

    表  1  RSA问题符号定义

    变量定义内容
    ¯ω正整数,ψ中的业务优先级上界;
    wr正整数,r所在的起始频谱槽序号;
    fru,v二值变量,若r经过光纤链路e(u,v)E,则fru,v=1;否则fru,v=0
    ρi,j二值变量,若rirj经过同一段光纤链路,且wiwj小,则ρi,j=1;否则ρi,j=0
    ξrs,u二值变量,若r的源节点为uN,则ξrs,u=1;否则,ξ1s,u=0
    ξrd,v二值变量,若r的目的节点为vN,则ξrd,v=1;否则,ξrd,v=0
    δr二值变量,若r降级,则δr=1;否则,δr=0
    χr正整数,r释放的频谱槽数;
    βr正整数,r恢复的频谱槽数;
    vrzr正整数,DR后r首/尾频谱槽序号;
    qek正实数,第k个频谱槽可被r用来DR的起始时间;
     tendr正实数,r被降级后的离开时间。
    下载: 导出CSV

    表  2  启发式算法部分的变量

    变量定义内容
    ul,kt,c二值变量,若pk中第l条链路的第c位频谱槽的第t时隙被占用,则ul,kt,c=1;否则ul,kt,c=0
    upt,c二值变量,若pk的第c位频谱槽的第t时隙被占用,则upt,c=1;否则,upt,c=0
    Bk,hb,epk的空闲频谱窗口,其频谱槽首、末序号为be,时长为h,含频谱槽数为nk,hb,e=eb+1
    τk,hb,e正整数,Bk,hb,e为满足r的带宽尚需的频谱槽数;
    χr正实数,降级业务r释放的频谱槽数;
    τleft,lb,e,τright,lb,e正整数,Bk,hb,e的每条链路上[bτk,hb,e,b)(e,e+τk,hb,e]内最少可释放的频谱槽数,lpk
    τleftb,e,τrightb,e正整数,Bk,hb,e所在路径上[bτk,hb,e,b)(e,e+τk,hb,e]内可释放的频谱槽数;
    br正整数,可降级业务r占用的带宽;
    hopr正整数,r所在路径的链路数;
    θχrr正实数,r释放的数据量;
    [s,d]r占用的频谱,有ds+1=br
    θrt正实数,r在第t时隙可恢复的数据量;
    θr正实数,r可恢复数据量之和;
    tendr正实数,r降级后的离去时间。
    [bτk,hb,e,b),(e,e+τk,hb,e]Bk,hb,e的左/右两侧的降级备选区间;
    [sχr,dχr],[s+χr,d+χr]r左/右两侧分别可恢复的频域;
    下载: 导出CSV

    表  3  DR策略伪码

     输入:ψ, G(N,E,C).
     输出:tendr and χr.
     (1) if or<or then
     (2)  tendrtendr, χr0; calculate χr, θχrr in
         [bτk,hb,e,b)(e,e+τk,hb,e];
     (3)  [Spk]T×|C|[Ulk]T×|C| in
         [s+χr,d+χr][sχr,dχr];
     (4)  while ttar and t¯αr do
     (5)   for uprt,c=0 do θrt Eq.24, c++; end for
     (6)   if uprt,c=1 then
     (7)    if cc in uprt1,c=1 then calculate
           θrEq.25, t++;
     (8)    else then
     (9)     θr Eqs. 24-25((c,dχr] or
            [s+χr,c)), t++;
     (10)    end if
     (11)   end if
     (12)   if θrθχrr then return tendr and χr; end if
     (13)  end while
     (14)  if θr<θχrr then setχr=χr1; jump to
         Line 1; end if
     (15)  if χr==0 then return 0; end if
     (16) end if
    下载: 导出CSV
  • ZHU Zuqing, LU Wei, ZHANG Liang, et al. Dynamic service provisioning in elastic optical networks with hybrid single-/multi-path routing[J]. Journal of Lightwave Technology, 2013, 31(1): 15–22. doi: 10.1109/JLT.2012.2227683
    GU Yamei, YUAN Xin, and YOU Shanhong. Blocking performances for fixed/flexible-grid and sub-band conversion in optical networks[C]. 2014 IEEE/CIC International Conference on Communications in China, Shanghai, China, 2014: 116–120. doi: 10.1109/ICCChina.2014.7008254.
    朱丹, 徐威远, 陈文娟, 等. 基于光波分复用网络的分布式多目标定位系统[J]. 雷达学报, 2019, 8(2): 171–177. doi: 10.12000/JR19028

    ZHU Dan, XU Weiyuan, CHEN Wenjuan, et al. Distributed multi-target localization system based on optical wavelength division multiplexing network[J]. Journal of Radars, 2019, 8(2): 171–177. doi: 10.12000/JR19028
    SAVAS S S, HABIB M F, TORNATORE M, et al. Exploiting degraded-service tolerance to improve performance of telecom networks[C]. Optical Fiber Communication Conference, San Francisco, USA, 2014: W2A. 31. doi: 10.1364/OFC.2014.W2A.31.
    MUHAMMAD A, CAVDAR C, WOSINSKA L, et al. Service differentiated provisioning in dynamic WDM networks based on set-up delay tolerance[J]. Journal of Optical Communications and Networking, 2013, 5(11): 1250–1261. doi: 10.1364/JOCN.5.001250
    SAVAS S S, HABIB M F, TORNATORE M, et al. Network adaptability to disaster disruptions by exploiting degraded-service tolerance[J]. IEEE Communications Magazine, 2014, 52(12): 58–65. doi: 10.1109/MCOM.2014.6979953
    VADREVU C S K, WANG Rui, TORNATORE M, et al. Degraded service provisioning in mixed-line-rate WDM backbone networks using multipath routing[J]. IEEE/ACM Transactions on Networking, 2014, 22(3): 840–849. doi: 10.1109/TNET.2013.2259638
    ZHONG Zhizhen, LI Jipu, HUA Nan, et al. On QoS-assured degraded provisioning in service-differentiated multi-layer elastic optical networks[C]. 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–5. doi: 10.1109/GLOCOM.2016.7842043.
    SANTOS A S, HOROTA A K, ZHONG Zhizhen, et al. An online strategy for service degradation with proportional QoS in elastic optical networks[C]. 2018 IEEE International Conference on Communications, Kansas City, USA, 2018: 1–6. doi: 10.1109/ICC.2018.8422781.
    HOU Weigang, GUO Lei, NING Zhaolong, et al. Appropriate service degradability for virtualized inter-data-center optical networks[C]. 2018 IEEE Global Communications Conference, Abu Dhabi, UAE, 2018: 206–212. doi: 10.1109/GLOCOM.2018.8647198.
    HOU Weigang, NING Zhaolong, GUO Lei, et al. Service degradability supported by forecasting system in optical data center networks[J]. IEEE Systems Journal, 2019, 13(2): 1514–1525. doi: 10.1109/JSYST.2018.2821714
    ROJAS J S, GALLÓN Á R, and CORRALES J C. Personalized service degradation policies on OTT applications based on the consumption behavior of users[C]. The 18th International Conference on Computational Science and Its Applications, Melbourne, Australia, 2018: 543–557. doi: 10.1007/978-3-319-95168-3_37.
    于存谦, 张黎, 何荣希. 弹性光网络基于区分降级服务和自适应调制的动态路由与频谱分配算法[J]. 电子与信息学报, 2019, 41(1): 38–45. doi: 10.11999/JEIT180075

    YU Cunqian, ZHANG Li, and HE Rongxi. Dynamic routing and spectrum assignment algorithm based on differentiated degraded-service and adaptive modulation in elastic optical networks[J]. Journal of Electronics &Information Technology, 2019, 41(1): 38–45. doi: 10.11999/JEIT180075
    YANG Anjia, WENG Jian, CHENG Nan, et al. DeQoS attack: Degrading quality of service in VANETs and its mitigation[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4834–4845. doi: 10.1109/TVT.2019.2905522
    PROTO S, VENTURA F, APILETTI D, et al. PREMISES, a scalable data-driven service to predict alarms in slowly-degrading multi-cycle industrial processes[C]. 2019 IEEE International Congress on Big Data, Milan, Italy, 2019: 139–143. doi: 10.1109/BigDataCongress.2019.00032.
    张海波, 李虎, 陈善学, 等. 超密集网络中基于移动边缘计算的任务卸载和资源优化[J]. 电子与信息学报, 2019, 41(5): 1194–1201. doi: 10.11999/JEIT180592

    ZHANG Haibo, LI Hu, CHEN Shanxue, et al. Computing offloading and resource optimization in ultra-dense networks with mobile edge computation[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1194–1201. doi: 10.11999/JEIT180592
  • 期刊类型引用(12)

    1. PENG Fang,WU Jun,WANG Shuai,LI Zhijun,XIANG Jianjun. An anti-main-lobe jamming algorithm for airborne early warning radar based on APC-SVRGD joint optimization. Journal of Systems Engineering and Electronics. 2022(01): 134-143 . 必应学术
    2. 付孝龙,白渭雄,李欣,陈津津. 单脉冲雷达多通道辅助处理主瓣干扰对消方法. 华中科技大学学报(自然科学版). 2017(07): 100-104 . 百度学术
    3. 窦慧晶,陈凤菊,王千龙,肖登亮. 双息信号的斜投影滤波性能. 北京工业大学学报. 2016(05): 691-696+787 . 百度学术
    4. 吴盛源,张小宽,刘铭,田松. 雷达最佳接收极化滤波优化研究. 传感器与微系统. 2016(11): 68-70+73 . 百度学术
    5. 任博,施龙飞,王国玉. 基于环境扰动模型的干扰抑制极化滤波器性能研究. 电子学报. 2016(03): 527-534 . 百度学术
    6. 陈津津,付孝龙. 机载自卫式电子干扰对抗技术研究. 飞航导弹. 2016(06): 50-54 . 百度学术
    7. 王雪松. 雷达极化技术研究现状与展望. 雷达学报. 2016(02): 119-131 . 百度学术
    8. 任博,施龙飞,王国玉. UHF波段雷达面临基站干扰信号的极化特性测量与分析. 雷达学报. 2016(02): 164-173 . 百度学术
    9. 施龙飞,任博,马佳智,李永祯. 雷达极化抗干扰技术进展. 现代雷达. 2016(04): 1-7+29 . 百度学术
    10. 任博,罗笑冰,邓方刚,王国玉. 应用极化聚类中心设计快速自适应极化滤波器. 国防科技大学学报. 2015(04): 87-92 . 百度学术
    11. 张建军. 基于MHT的网络化雷达抗干扰算法. 计算机工程与设计. 2015(02): 415-418+451 . 百度学术
    12. 刘文钊,戴幻尧,黄振宇,崔建岭. 基于空域调制效应的干扰极化参数估计. 应用科学学报. 2015(05): 518-526 . 百度学术

    其他类型引用(11)

  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  1934
  • HTML全文浏览量:  578
  • PDF下载量:  51
  • 被引次数: 23
出版历程
  • 收稿日期:  2019-09-13
  • 修回日期:  2020-06-15
  • 网络出版日期:  2020-07-17
  • 刊出日期:  2020-10-13

目录

    /

    返回文章
    返回