高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多通道多尺度卷积神经网络的单幅图像去雨方法

柳长源 王琪 毕晓君

柳长源, 王琪, 毕晓君. 基于多通道多尺度卷积神经网络的单幅图像去雨方法[J]. 电子与信息学报, 2020, 42(9): 2285-2292. doi: 10.11999/JEIT190755
引用本文: 柳长源, 王琪, 毕晓君. 基于多通道多尺度卷积神经网络的单幅图像去雨方法[J]. 电子与信息学报, 2020, 42(9): 2285-2292. doi: 10.11999/JEIT190755
Changyuan LIU, Qi WANG, Xiaojun BI. Research on Rain Removal Method for Single Image Based on Multi-channel and Multi-scale CNN[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2285-2292. doi: 10.11999/JEIT190755
Citation: Changyuan LIU, Qi WANG, Xiaojun BI. Research on Rain Removal Method for Single Image Based on Multi-channel and Multi-scale CNN[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2285-2292. doi: 10.11999/JEIT190755

基于多通道多尺度卷积神经网络的单幅图像去雨方法

doi: 10.11999/JEIT190755
基金项目: 国家自然科学基金(51779050)
详细信息
    作者简介:

    柳长源:男,1970年生,副教授,工学博士,硕士生导师,研究方向为模式识别与图像处理,机器学习与优化方法

    王琪:女,1996年生,硕士生,研究方向为模式识别与图像处理

    毕晓君:女,1964年生,教授,博士生导师,研究方向为数字图像处理、信息智能处理技术及通信信息处理技术

    通讯作者:

    王琪 1208401521@qq.com

  • 中图分类号: TN911.73; TP391.4

Research on Rain Removal Method for Single Image Based on Multi-channel and Multi-scale CNN

Funds: The National Natural Science Foundation of China(51779050)
  • 摘要: 雨天等恶劣天气会严重影响到图像成像质量,从而影响到视觉处理算法的性能。为了改善雨天图像的成像质量,该文提出一种基于多通道多尺度卷积神经网络的去雨算法,建立了多通道多尺度卷积神经网络结构来提取雨线特征。首先利用小波阈值引导的双边滤波将有雨图像进行分解,得到高频雨线图像和轮廓保持度高的低频背景图像。然后为了使图像高频部分的雨线信息更为明显,减少雨线特征学习时高频图像中的背景误判,将得到的高频雨线图像再一次通过滤波器得到减弱背景信息同时增强雨线信息的到更高频雨线图像。其次针对低频背景图像上也残留了大量雨痕,该文提出将低频背景图像和更高频雨线图像一起送入卷积神经网络进行特征学习,其中对图像提取的是多尺度特征信息,最后得到雨线去除更彻底的复原图像。同时在构造网络模型时利用空洞卷积代替标准卷积来提取图像的特征信息,得到更丰富的图像特征,提高了算法的去雨性能。从实验结果可以看出去雨之后的图像清晰,细节保持度较高。
  • 图  1  不同滤波器滤波后得到的低频背景图像对比

    图  2  低频图像对比

    图  3  颜色直方图对比

    图  4  高频雨线图像与更高频雨线图像对比

    图  5  多通道多尺度卷积神经网络结构

    图  6  模拟雨图去雨效果对比

    图  7  真实雨图去雨效果对比

    表  1  PSNR对比结果

    图像文献[8]文献[12]文献[13]本文方法
    第1幅20.15721.23321.77923.128
    第2幅21.53024.78325.63726.821
    第3幅27.00630.25231.55334.460
    300张平均22.53724.83826.09627.794
    下载: 导出CSV

    表  2  SSIM对比结果

    图像文献[8]文献[12]文献[13]本文方法
    第1幅0.90120.90480.91330.9236
    第2幅0.89370.91560.92480.9420
    第3幅0.88300.93640.94300.9448
    300张平均0.89630.92460.93980.9434
    下载: 导出CSV

    表  3  图像质量指标对比

    图像指标单尺度卷积
    5 × 5
    单尺度卷积
    7 × 7
    多尺度卷积
    第1幅PSNR21.25320.19723.128
    SSIM0.91090.91140.9236
    第2幅PSNR25.01725.71426.821
    SSIM0.92110.92370.9420
    第3幅PSNR31.58130.33634.460
    SSIM0.93820.93690.9448
    300张平均PSNR25.97325.28527.794
    SSIM0.93500.93370.9434
    下载: 导出CSV
  • 郭智, 宋萍, 张义, 等. 基于深度卷积神经网络的遥感图像飞机目标检测方法[J]. 电子与信息学报, 2018, 40(11): 2684–2690. doi: 10.11999/JEIT180117

    GUO Zhi, SONG Ping, ZHANG Yi, et al. Aircraft detection method based on deep convolutional neural network for remote sensing images[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2684–2690. doi: 10.11999/JEIT180117
    孙彦景, 石韫开, 云霄, 等. 基于多层卷积特征的自适应决策融合目标跟踪算法[J]. 电子与信息学报, 2019, 41(10): 2464–2470. doi: 10.11999/JEIT180971

    SUN Yanjing, SHI Yunkai, YUN Xiao, et al. Adaptive strategy fusion target tracking based on multi-layer convolutional features[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2464–2470. doi: 10.11999/JEIT180971
    GARG K and NAYAR S K. Detection and removal of rain from videos[C]. 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington DC, USA, 2004. doi: 10.1109/CVPR.2004.1315077.
    BARNUM P C, NARASIMHAN S, and KANADE T. Analysis of rain and snow in frequency space[J]. International Journal of Computer Vision, 2010, 86(2): 256–274. doi: 10.1007/s11263-008-0200-2
    LIU Jiaying, YANG Wenhan, YANG Shuai, et al. Erase or fill? Deep joint recurrent rain removal and reconstruction in videos[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3233–3242. doi: 10.1109/CVPR.2018.00341.
    CHEN Jie, TAN C H, HOU Junhui, et al. Robust video content alignment and compensation for rain removal in a CNN framework[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6286–6295. doi: 10.1109/CVPR.2018.00658.
    KIM J H, LEE C, SIM J Y, et al. Single-image deraining using an adaptive nonlocal means filter[C]. 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 2013: 914–917. doi: 10.1109/ICIP.2013.6738189.
    HUANG Dean, KANG Liwei, WANG Y C F, et al. Self-learning based image decomposition with applications to single image denoising[J]. IEEE Transactions on Multimedia, 2014, 16(1): 83–93. doi: 10.1109/TMM.2013.2284759
    LUO Yu, XU Yong, and JI Hui. Removing rain from a single image via discriminative sparse coding[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3397–3405. doi: 10.1109/ICCV.2015.388.
    KANG Liwei, LIN C W, and FU Y H. Automatic single-image-based rain streaks removal via image decomposition[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1742–1755. doi: 10.1109/TIP.2011.2179057
    QIAN Rui, TAN R T, YANG Wenhan, et al. Attentive generative adversarial network for raindrop removal from a single image[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2482–2491. doi: 10.1109/CVPR.2018.00263.
    HE Zhang and PATEL V M. Density-aware single image de-raining using a multi-stream dense network[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 695–704. doi: 10.1109/CVPR.2018.00079.
    FU Xueyang, HUANG Jiabin, DING Xinghao, et al. Clearing the skies: A deep network architecture for single-image rain removal[J]. IEEE Transactions on Image Processing, 2017, 26(6): 2944–2956. doi: 10.1109/TIP.2017.2691802
    肖进胜, 李文昊, 姜红, 等. 基于双域滤波的三维块匹配视频去噪算法[J]. 通信学报, 2015, 36(9): 91–97. doi: 10.11959/j.issn.1000-436x.2015245

    XIAO Jinsheng, LI Wenhao, JIANG Hong, et al. Three dimensional block-matching video denoising algorithm based on dual-domain filtering[J]. Journal on Communications, 2015, 36(9): 91–97. doi: 10.11959/j.issn.1000-436x.2015245
    XIAO Jinsheng, LI Wenhao, LIU Guoxiong, et al. Hierarchical tone mapping based on image colour appearance model[J]. IET Computer Vision, 2014, 8(4): 358–364. doi: 10.1049/iet-cvi.2013.0230
    YU Hancheng, LI Zhao, and WANG Haixian. Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the Spatial Domain[J]. IEEE Transactions on Image Processing, 2009, 18(10): 2364–2369. doi: 10.1109/TIP.2009.2026685
    HUYNH-THU Q and GHANBARI M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44(13): 800–801. doi: 10.1049/el:20080522
    WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  2939
  • HTML全文浏览量:  851
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-29
  • 修回日期:  2020-05-28
  • 网络出版日期:  2020-07-13
  • 刊出日期:  2020-09-27

目录

    /

    返回文章
    返回