Adaptive-Rate Compressive Sensing Using Energy Matching for Monitoring Video
-
摘要: 获取信号稀疏度对压缩感知(CS)性能的提升有重大意义,但在采样端不进行完整信号数字化采集和存储的情况下,对信号稀疏度进行估计比较困难。现有方法在稀疏度估计性能和计算复杂度方面难以取得较好的平衡。针对采样端对信号特性未知的监控视频应用,该文提出一种新的使用能量匹配的自适应速率压缩感知方法(ARCS-EM),通过观测一个恒定低速率的压缩感知观测结果来对当前帧实际稀疏度进行估计,然后根据估计结果决定当前帧应执行的压缩感知测量数,再进行补充测量得到当前帧的优化压缩感知采样结果。实验结果表明,该方法可以较好地适应视频中前景稀疏度的变化,为每帧图像分配适当的压缩感知测量速率,在不显著提高采样端计算复杂度的前提下,有效提高重建视频的质量。Abstract: Signal sparsity is of great significance for the improvement of Compressive Sensing (CS) performance. However, it is difficult to estimate the sparsity when the whole signal is not captured and stored at the sampling side. Few existing mothed can achieve good balance in terms of the sparsity estimation performance and the computational complexity. For the monitoring video applications where the signal characteristics is unknown for sampling devices, a new Adaptive-Rate CS using Energy Matching (ARCS-EM) method is proposed. By observing the measurement results of a low-rate compressive sensing, the actual sparsity of the current frame is estimated and then the rate of measurement for the current frame is determined. Finally, supplementary measurements are performed to obtain the optimized compressive sensing result for the current frame. Experiment results show that the proposed method could allocate suitable measurement rate for each frame to adapt to the variation of sparsity in different frames. The quality of reconstructed videos is effectively improved without noticeably increasing computational complexity in the sampling side.
-
表 1 实验参数
参数 Σ a b τ r 视频序列Hall 2.65 16 128 8 600 视频序列PETS 2.45 16 128 8 600 表 2 不同方法的自适压缩感知平均性能对比
实验结果 Hall视频平均压缩
感知采样率Hall视频平均峰值
信噪比(dB)PETS视频平均压缩
感知采样率PETS视频平均峰值
信噪比(dB)Oracle 0.2040 36.59 0.1317 40.02 CDSAM方法 0.2297 36.34 0.2001 39.53 ARCS-CV方法 0.2137 37.03 0.1191 39.07 ARCS-EM方法 0.2232 37.26 0.1350 40.26 表 3 采样运行时间对照表(ms)
运行时间 Hall视频T1 Hall视频T2 Hall视频T3 Hall视频T PETS视频T1 PETS视频T2 PETS视频T3 PETS视频T CDSAM方法 7.48 104.18 0 111.66 6.76 94.93 0 101.69 ARCS-CV方法 957.26 0.14 2.99×105 3.00×105 526.56 0.11 1.44×105 1.45×105 ARCS-EM方法 800.87 0.42 0 801.29 498.75 0.51 0 499.26 -
CANDÈS E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509. doi: 10.1109/TIT.2005.862083 DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582 CANDÈS E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9/10): 589–592. doi: 10.1016/j.crma.2008.03.014 王钢, 周若飞, 邹昳琨. 基于压缩感知理论的图像优化技术[J]. 电子与信息学报, 2020, 42(1): 222–233. doi: 10.11999/JEIT190669WANG Gang, ZHOU Ruofei, and ZOU Yikun. Research on image optimization technology based on Compressed Sensing[J]. Journal of Electronics &Information Technology, 2020, 42(1): 222–233. doi: 10.11999/JEIT190669 杨森林, 万国宾. 联合结构预测和运动补偿的视频自适应压缩感知[J]. 西北大学学报: 自然科学版, 2019, 49(6): 909–917. doi: 10.16152/j.cnki.xdxbzr.2019-06-010YANG Senlin and WAN Guobin. Adaptive compressed sensing of video by combining structural predictions and motion compensation[J]. Journal of Northwest University:Natural Science Edition, 2019, 49(6): 909–917. doi: 10.16152/j.cnki.xdxbzr.2019-06-010 SHAHRASBI B and RAHNAVARD N. Model-based nonuniform Compressive Sampling and recovery of natural images utilizing a Wavelet-domain universal hidden Markov model[J]. IEEE Transactions on Signal Processing, 2017, 65(1): 95–104. doi: 10.1109/TSP.2016.2614654 LAKSHMI T C S, GNANADURAI D, and MUTHULAKSHMI I. Energy conserving texture-based adaptable Compressive Sensing scheme for WVSN[J]. Concurrency and Computation: Practice and Experience, 2019: e5178. doi: 10.1002/cpe.5178 ZHANG Xufan, WANG Yong, WANG Dianhong, et al. Adaptive image compression based on compressive sensing for video sensor nodes[J]. Multimedia Tools and Applications, 2018, 77(11): 13679–13699. doi: 10.1007/s11042-017-4981-6 DUARTE M F, DAVENPORT M A, TAKHAR D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83–91. doi: 10.1109/msp.2007.914730 范剑英, 马明阳, 赵首博. 基于压缩感知高反光成像技术研究[J]. 电子与信息学报, 2020, 42(4): 1013–1020. doi: 10.11999/JEIT190512FAN Jianying, MA Mingyang, and ZHAO Shoubo. Research on high reflective imaging technology based on compressed sensing[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1013–1020. doi: 10.11999/JEIT190512 吴新杰, 闫诗雨, 徐攀峰, 等. 基于稀疏度自适应压缩感知的电容层析成像图像重建算法[J]. 电子与信息学报, 2018, 40(5): 1250–1257. doi: 10.11999/JEIT170794WU Xinjie, YAN Shiyu, XU Panfeng, et al. Image reconstruction algorithm for electrical capacitance tomography based on sparsity adaptive Compressed Sensing[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1250–1257. doi: 10.11999/JEIT170794 SHANGGUAN Wentao, YAN Qiurong, WANG Hui, et al. Adaptive single photon compressed imaging based on constructing a smart threshold matrix[J]. Sensors, 2018, 18(10): 3449. doi: 10.3390/s18103449 YUAN Xin, YANG Jianbo, LLULL P, et al. Adaptive temporal compressive sensing for video[C]. 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 2013: 14–18. doi: 10.1109/ICIP.2013.6738004. WANG Yeru, TANG Chaoying, CHEN Yueting, et al. Adaptive temporal Compressive Sensing for video with motion estimation[J]. Optical Review, 2018, 25(2): 215–226. doi: 10.1007/s10043-018-0408-5 练秋生, 田天, 陈书贞, 等. 基于变采样率的多假设预测分块视频压缩感知[J]. 电子与信息学报, 2013, 35(1): 203–208. doi: 10.3724/SP.J.1146.2012.00590LIAN Qiusheng, TIAN Tian, CHEN Shuzhen, et al. Block compressed sensing of video based on variable sampling rates and multihypothesis predictions[J]. Journal of Electronics &Information Technology, 2013, 35(1): 203–208. doi: 10.3724/SP.J.1146.2012.00590 LI Honggui. Compressive domain spatial–temporal difference saliency-based realtime adaptive measurement method for video recovery[J]. IET Image Processing, 2019, 13(11): 2008–2017. doi: 10.1049/iet-ipr.2019.0116 WARNELL G, BHATTACHARYA S, CHELLAPPA R, et al. Adaptive-rate compressive sensing using side information[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3846–3857. doi: 10.1109/TIP.2015.2456425 DUARTE-CARVAJALINO J M, YU Guoshen, CARIN L, et al. Task-driven adaptive statistical compressive sensing of Gaussian mixture models[J]. IEEE Transactions on Signal Processing, 2013, 61(3): 585–600. doi: 10.1109/TSP.2012.2225054 VAN DER BERG E and FRIEDLANDER M P. Probing the Pareto Frontier for basis pursuit solutions[J]. SIAM Journal on Scientific Computing, 2009, 31(2): 890–912. doi: 10.1137/080714488 DONOHO D L and TANNER J. Precise undersampling theorems[J]. Proceedings of the IEEE, 2010, 98(6): 913–924. doi: 10.1109/jproc.2010.2045630 CEVHER V, SANKARANARAYANAN A, DUARTE M F, et al. Compressive sensing for background subtraction[C]. The 10th European Conference on Computer Vision, France, Marseille, 2008: 155–168. doi: 10.1007/978-3-540-88688-4_12. WARD R. Compressed sensing with cross validation[J]. IEEE Transactions on Information Theory, 2009, 55(12): 5773–5782. doi: 10.1109/tit.2009.2032712 JOHNSON W B and LINDENSTRAUSS J. Extensions of Lipschitz mappings into a Hilbert space[J]. Contemporary Mathematics, 1984, 26(12): 189–206. doi: 10.1090/conm/026/737400 期刊类型引用(21)
1. 李民,郭琳,姚雄. 优化高斯过程回归在太阳能集热效率预测上的应用. 电网与清洁能源. 2023(08): 127-131+138 . 百度学术
2. Han-shan Li. Recognition model and algorithm of projectiles by combining particle swarm optimization support vector and spatial-temporal constrain. Defence Technology. 2023(09): 273-283 . 必应学术
3. 何旭,席佩瑶,辛云宏. 基于代价敏感思想和自适应增强集成的SVM多分类算法. 微型电脑应用. 2023(09): 1-3 . 百度学术
4. 徐红先,张书玮. 基于极限学习机及多姿态信息融合的步态识别. 机械. 2023(11): 72-80 . 百度学术
5. 陈晓禾,曹旭刚,陈健生,胡春华,马羽. 基于三维卷积的帕金森患者拖步识别. 电子与信息学报. 2021(12): 3467-3475 . 本站查看
6. 雷建超,刘栋博,房玉,庄祖江,刘俊豪. 基于表面肌电信号的性别差异性手势识别. 中国医学物理学杂志. 2020(03): 337-341 . 百度学术
7. 金鑫,冯毅,尤雪汐,王佳欣. 基于机器学习的信息安全设备调配保障技术研究. 电子科技. 2020(08): 80-86 . 百度学术
8. 孟明,闫冉,高云园,佘青山. 基于多元变分模态分解的脑电多域特征提取方法. 传感技术学报. 2020(06): 853-860 . 百度学术
9. 王志芳,王书涛,王贵川. 粒子群优化BP神经网络在甲烷检测中的应用. 光子学报. 2019(04): 147-154 . 百度学术
10. 邹倩颖,王小芳. 粒子群优化BP神经网络在步态识别中的研究. 实验技术与管理. 2019(08): 130-133+138 . 百度学术
11. 郭海山,高波涌,陆慧娟. 基于Boruta-PSO-SVM的股票收益率研究. 传感器与微系统. 2018(03): 51-53+57 . 百度学术
12. 周长林,钱志升,王勤民,余道杰,程俊平. 基于PSO-SVM方法的电源线传导泄漏信号识别与还原. 电子与信息学报. 2018(09): 2206-2211 . 本站查看
13. 赵荣建,汤敏芳,陈贤祥,杜利东,曾华林,赵湛,方震. 基于光纤传感的生理参数监测系统研究. 电子与信息学报. 2018(09): 2182-2189 . 本站查看
14. 胡长俊,袁树杰. 煤矿井下WSN中基于自适应粒子群聚类算法的多sink节点部署. 计算机科学. 2018(11): 103-107+123 . 百度学术
15. 王秀娟,相从斌. 基于累积量的DoS攻击检测算法. 北京工业大学学报. 2017(09): 1328-1334 . 百度学术
16. 杜必强,孙立江. 基于PSO-SVM模型的焊接转子环焊缝超声缺陷识别. 动力工程学报. 2017(05): 379-385 . 百度学术
17. 赵湛,韩璐,方震,陈贤祥,杜利东,刘正奎. 基于可穿戴设备的日常压力状态评估研究. 电子与信息学报. 2017(11): 2669-2676 . 本站查看
18. 董广宇. 基于多特征融合的复杂路况步态识别方法. 科学技术与工程. 2017(08): 202-207 . 百度学术
19. 韩笑,佘青山,高云园,罗志增. 基于NA-MEMD和互信息的脑电特征提取方法. 传感技术学报. 2016(08): 1140-1148 . 百度学术
20. 黄成泉,王士同,蒋亦樟,董爱美. v-软间隔罗杰斯特回归分类机. 电子与信息学报. 2016(04): 985-992 . 本站查看
21. 徐超立,林科,杨晨,吴超华,高小榕. 基于小腿表面肌电的智能机器人协同控制方法. 中国生物医学工程学报. 2016(04): 385-393 . 百度学术
其他类型引用(43)
-