高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

使用能量匹配的监控视频自适应速率压缩感知

王健明 陈建华

王健明, 陈建华. 使用能量匹配的监控视频自适应速率压缩感知[J]. 电子与信息学报, 2020, 42(12): 3021-3028. doi: 10.11999/JEIT190750
引用本文: 王健明, 陈建华. 使用能量匹配的监控视频自适应速率压缩感知[J]. 电子与信息学报, 2020, 42(12): 3021-3028. doi: 10.11999/JEIT190750
Jianming WANG, Jianhua CHEN. Adaptive-Rate Compressive Sensing Using Energy Matching for Monitoring Video[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3021-3028. doi: 10.11999/JEIT190750
Citation: Jianming WANG, Jianhua CHEN. Adaptive-Rate Compressive Sensing Using Energy Matching for Monitoring Video[J]. Journal of Electronics & Information Technology, 2020, 42(12): 3021-3028. doi: 10.11999/JEIT190750

使用能量匹配的监控视频自适应速率压缩感知

doi: 10.11999/JEIT190750
基金项目: 国家自然科学基金(61861045)
详细信息
    作者简介:

    王健明:男,1984年生,博士生,研究方向为数据压缩

    陈建华:男,1964年生,教授,博士生导师,研究方向为信息传输理论与应用

    通讯作者:

    陈建华 chenjh@ynu.edu.cn

  • 中图分类号: TN911.73

Adaptive-Rate Compressive Sensing Using Energy Matching for Monitoring Video

Funds: The National Natural Science Foundation of China (61861045)
  • 摘要: 获取信号稀疏度对压缩感知(CS)性能的提升有重大意义,但在采样端不进行完整信号数字化采集和存储的情况下,对信号稀疏度进行估计比较困难。现有方法在稀疏度估计性能和计算复杂度方面难以取得较好的平衡。针对采样端对信号特性未知的监控视频应用,该文提出一种新的使用能量匹配的自适应速率压缩感知方法(ARCS-EM),通过观测一个恒定低速率的压缩感知观测结果来对当前帧实际稀疏度进行估计,然后根据估计结果决定当前帧应执行的压缩感知测量数,再进行补充测量得到当前帧的优化压缩感知采样结果。实验结果表明,该方法可以较好地适应视频中前景稀疏度的变化,为每帧图像分配适当的压缩感知测量速率,在不显著提高采样端计算复杂度的前提下,有效提高重建视频的质量。
  • 图  1  视频序列范例

    图  2  测试视频稀疏程度估计表现

    图  3  测试视频采样速率

    图  4  测试视频图像重建质量

    表  1  实验参数

    参数$\varSigma $$a$$b$$\tau $$r$
    视频序列Hall2.65161288600
    视频序列PETS2.45161288600
    下载: 导出CSV

    表  2  不同方法的自适压缩感知平均性能对比

    实验结果Hall视频平均压缩
    感知采样率
    Hall视频平均峰值
    信噪比(dB)
    PETS视频平均压缩
    感知采样率
    PETS视频平均峰值
    信噪比(dB)
    Oracle0.204036.590.131740.02
    CDSAM方法0.229736.340.200139.53
    ARCS-CV方法0.213737.030.119139.07
    ARCS-EM方法0.223237.260.135040.26
    下载: 导出CSV

    表  3  采样运行时间对照表(ms)

    运行时间Hall视频T1Hall视频T2Hall视频T3Hall视频TPETS视频T1PETS视频T2PETS视频T3PETS视频T
    CDSAM方法7.48104.180111.666.7694.930101.69
    ARCS-CV方法957.260.142.99×1053.00×105526.560.111.44×1051.45×105
    ARCS-EM方法800.870.420801.29498.750.510499.26
    下载: 导出CSV
  • CANDÈS E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509. doi: 10.1109/TIT.2005.862083
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    CANDÈS E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9/10): 589–592. doi: 10.1016/j.crma.2008.03.014
    王钢, 周若飞, 邹昳琨. 基于压缩感知理论的图像优化技术[J]. 电子与信息学报, 2020, 42(1): 222–233. doi: 10.11999/JEIT190669

    WANG Gang, ZHOU Ruofei, and ZOU Yikun. Research on image optimization technology based on Compressed Sensing[J]. Journal of Electronics &Information Technology, 2020, 42(1): 222–233. doi: 10.11999/JEIT190669
    杨森林, 万国宾. 联合结构预测和运动补偿的视频自适应压缩感知[J]. 西北大学学报: 自然科学版, 2019, 49(6): 909–917. doi: 10.16152/j.cnki.xdxbzr.2019-06-010

    YANG Senlin and WAN Guobin. Adaptive compressed sensing of video by combining structural predictions and motion compensation[J]. Journal of Northwest University:Natural Science Edition, 2019, 49(6): 909–917. doi: 10.16152/j.cnki.xdxbzr.2019-06-010
    SHAHRASBI B and RAHNAVARD N. Model-based nonuniform Compressive Sampling and recovery of natural images utilizing a Wavelet-domain universal hidden Markov model[J]. IEEE Transactions on Signal Processing, 2017, 65(1): 95–104. doi: 10.1109/TSP.2016.2614654
    LAKSHMI T C S, GNANADURAI D, and MUTHULAKSHMI I. Energy conserving texture-based adaptable Compressive Sensing scheme for WVSN[J]. Concurrency and Computation: Practice and Experience, 2019: e5178. doi: 10.1002/cpe.5178
    ZHANG Xufan, WANG Yong, WANG Dianhong, et al. Adaptive image compression based on compressive sensing for video sensor nodes[J]. Multimedia Tools and Applications, 2018, 77(11): 13679–13699. doi: 10.1007/s11042-017-4981-6
    DUARTE M F, DAVENPORT M A, TAKHAR D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83–91. doi: 10.1109/msp.2007.914730
    范剑英, 马明阳, 赵首博. 基于压缩感知高反光成像技术研究[J]. 电子与信息学报, 2020, 42(4): 1013–1020. doi: 10.11999/JEIT190512

    FAN Jianying, MA Mingyang, and ZHAO Shoubo. Research on high reflective imaging technology based on compressed sensing[J]. Journal of Electronics &Information Technology, 2020, 42(4): 1013–1020. doi: 10.11999/JEIT190512
    吴新杰, 闫诗雨, 徐攀峰, 等. 基于稀疏度自适应压缩感知的电容层析成像图像重建算法[J]. 电子与信息学报, 2018, 40(5): 1250–1257. doi: 10.11999/JEIT170794

    WU Xinjie, YAN Shiyu, XU Panfeng, et al. Image reconstruction algorithm for electrical capacitance tomography based on sparsity adaptive Compressed Sensing[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1250–1257. doi: 10.11999/JEIT170794
    SHANGGUAN Wentao, YAN Qiurong, WANG Hui, et al. Adaptive single photon compressed imaging based on constructing a smart threshold matrix[J]. Sensors, 2018, 18(10): 3449. doi: 10.3390/s18103449
    YUAN Xin, YANG Jianbo, LLULL P, et al. Adaptive temporal compressive sensing for video[C]. 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 2013: 14–18. doi: 10.1109/ICIP.2013.6738004.
    WANG Yeru, TANG Chaoying, CHEN Yueting, et al. Adaptive temporal Compressive Sensing for video with motion estimation[J]. Optical Review, 2018, 25(2): 215–226. doi: 10.1007/s10043-018-0408-5
    练秋生, 田天, 陈书贞, 等. 基于变采样率的多假设预测分块视频压缩感知[J]. 电子与信息学报, 2013, 35(1): 203–208. doi: 10.3724/SP.J.1146.2012.00590

    LIAN Qiusheng, TIAN Tian, CHEN Shuzhen, et al. Block compressed sensing of video based on variable sampling rates and multihypothesis predictions[J]. Journal of Electronics &Information Technology, 2013, 35(1): 203–208. doi: 10.3724/SP.J.1146.2012.00590
    LI Honggui. Compressive domain spatial–temporal difference saliency-based realtime adaptive measurement method for video recovery[J]. IET Image Processing, 2019, 13(11): 2008–2017. doi: 10.1049/iet-ipr.2019.0116
    WARNELL G, BHATTACHARYA S, CHELLAPPA R, et al. Adaptive-rate compressive sensing using side information[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3846–3857. doi: 10.1109/TIP.2015.2456425
    DUARTE-CARVAJALINO J M, YU Guoshen, CARIN L, et al. Task-driven adaptive statistical compressive sensing of Gaussian mixture models[J]. IEEE Transactions on Signal Processing, 2013, 61(3): 585–600. doi: 10.1109/TSP.2012.2225054
    VAN DER BERG E and FRIEDLANDER M P. Probing the Pareto Frontier for basis pursuit solutions[J]. SIAM Journal on Scientific Computing, 2009, 31(2): 890–912. doi: 10.1137/080714488
    DONOHO D L and TANNER J. Precise undersampling theorems[J]. Proceedings of the IEEE, 2010, 98(6): 913–924. doi: 10.1109/jproc.2010.2045630
    CEVHER V, SANKARANARAYANAN A, DUARTE M F, et al. Compressive sensing for background subtraction[C]. The 10th European Conference on Computer Vision, France, Marseille, 2008: 155–168. doi: 10.1007/978-3-540-88688-4_12.
    WARD R. Compressed sensing with cross validation[J]. IEEE Transactions on Information Theory, 2009, 55(12): 5773–5782. doi: 10.1109/tit.2009.2032712
    JOHNSON W B and LINDENSTRAUSS J. Extensions of Lipschitz mappings into a Hilbert space[J]. Contemporary Mathematics, 1984, 26(12): 189–206. doi: 10.1090/conm/026/737400
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  808
  • HTML全文浏览量:  218
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-29
  • 修回日期:  2020-09-27
  • 网络出版日期:  2020-09-29
  • 刊出日期:  2020-12-08

目录

    /

    返回文章
    返回