高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于迟滞噪声混沌神经网络的导频分配

邵凯 李述栋 王光宇 付天飞

邵凯, 李述栋, 王光宇, 付天飞. 基于迟滞噪声混沌神经网络的导频分配[J]. 电子与信息学报, 2020, 42(10): 2454-2461. doi: 10.11999/JEIT190748
引用本文: 邵凯, 李述栋, 王光宇, 付天飞. 基于迟滞噪声混沌神经网络的导频分配[J]. 电子与信息学报, 2020, 42(10): 2454-2461. doi: 10.11999/JEIT190748
Kai SHAO, Shudong LI, Guangyu WANG, Tianfei FU. Hysteretic Noisy Chaotic Neural Networks Based Pilot Assignment[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2454-2461. doi: 10.11999/JEIT190748
Citation: Kai SHAO, Shudong LI, Guangyu WANG, Tianfei FU. Hysteretic Noisy Chaotic Neural Networks Based Pilot Assignment[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2454-2461. doi: 10.11999/JEIT190748

基于迟滞噪声混沌神经网络的导频分配

doi: 10.11999/JEIT190748
详细信息
    作者简介:

    邵凯:男,1977年生,副教授,研究方向为新型多载波调制技术、新型多址接入技术

    李述栋:男,1994年生,硕士,研究方向为AI在无线通信中的应用

    王光宇:男,1964年生,教授,研究方向为新型多载波调制技术、新型多址接入技术

    付天飞:男,1992年生,硕士,研究方向为大规模MIMO导频污染抑制技术

    通讯作者:

    邵凯 shaokai@cqupt.edu.cn

  • 中图分类号: TN911

Hysteretic Noisy Chaotic Neural Networks Based Pilot Assignment

  • 摘要: 在多小区大规模多输入多输出(MIMO)系统中,导频污染已经成为制约整个系统的瓶颈。合理地使用导频资源能减轻导频污染的影响,为了寻找使边缘用户和容量最大的导频分配方式,该文首次提出了基于迟滞噪声混沌神经网络(HNCNN)的导频分配方案。迟滞噪声混沌神经网络作为良好的优化工具,其优化能力与所设计的能量函数相关。该方案结合导频资源使用的特点以及最大化边缘用户和容量的计算方式,设计了新的能量函数。仿真结果表明,网络能在一定迭代次数后收敛到较优的导频分配方式。与其它文献方案相比,采用以HNCNN为框架求取导频分配方式,可以更有效减轻导频污染的影响,使系统性能得到改善。
  • 图  1  导频分配示意图($L$=3,$K$=4)

    图  2  用户分组门限示意图

    图  3  导频分配矩阵示例

    图  4  基于HNCNN的导频分配流程框图

    图  5  多小区多用户场景

    图  6  不同算法的边缘用户上行传输容量对比

    图  7  不同算法的用户上行传输容量对比

    表  1  大规模MIMO参数

    参数取值
    小区数$L$7
    每小区天线数256
    小区半径1.6 km
    小区服务数12
    上下行发射功率15 dBm, 43 dBm
    路径衰落指数$\alpha $3.8
    用户分组门限F0.33
    对数阴影衰落8 dB
    下载: 导出CSV

    表  2  HNCNN仿真分析

    场景随机平均$\Sigma $算法有效次数平均$\varSigma$提升比例(%)
    158.38HNCNN-C981/100078.7334.86
    HNCNN-A1000/100079.9036.86
    265.43HNCNN-C982/100084.9829.88
    HNCNN-A990/100085.8631.22
    378.26HNCNN-C964/100097.0724.04
    HNCNN-A982/100097.4924.57
    454.47HNCNN-C982/100065.6520.53
    HNCNN-A1000/100067.1323.24
    559.04HNCNN-C946/100082.2039.23
    HNCNN-A958/100083.6641.70
    662.81HNCNN-C984/100073.1416.45
    HNCNN-A993/100074.8019.09
    下载: 导出CSV
  • NGO H Q, LARSSON E G, and MARZETTA T L. Energy and spectral efficiency of very large multiuser MIMO systems[J]. IEEE Transactions on Communications, 2013, 61(4): 1436–1449. doi: 10.1109/TCOMM.2013.020413.110848
    RUSEK R, PERSSON D, LAU B K, et al. Scaling up MIMO: Opportunities and challenges with very large arrays[J]. IEEE Signal Processing Magazine, 2013, 30(1): 40–60. doi: 10.1109/MSP.2011.2178495
    LEE T, PARK S, KIM H S, et al. Sounding resource management for QoS support in massive MIMO systems[J]. Computer Networks, 2014, 70: 142–153. doi: 10.1016/j.comnet.2014.05.001
    MUPPIRISETTY L S, CHARALAMBOUS T, KAROUT J, et al. Location-aided pilot contamination avoidance for massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2662–2674. doi: 10.1109/TWC.2018.2800038
    ZHOU Zhichao, WANG Dong, and Wang Zhenchao. Asynchronous pilots scheduling in massive MIMO systems[C]. 2017 IEEE International Conference on Communications (ICC), Paris, France, 2017: 1–6.
    方昕, 张建锋, 曹海燕, 等. 大规模MIMO系统中动态导频分配[J]. 电子与信息学报, 2016, 38(8): 1901–1907. doi: 10.11999/JEIT151091

    FANG Xin, ZHANG Jianfeng, CAO Haiyan, et al. Dynamic pilot allocation in massive MIMO system[J]. Journal of Electronics &Information Technology, 2016, 38(8): 1901–1907. doi: 10.11999/JEIT151091
    XU Yaohua and WU Yong. An approach of pilot contamination reduction based on power control and orthogonal identification[C]. The 3rd IEEE International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, 2018: 476–480.
    ZHANG Xiaoqing, LIU Ju, WU Shangbin, et al. Uplink pilot power control with genetic algorithm for massive MIMO networks[C]. The 9th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 2017: 1–6.
    李梦婉, 景小荣, 莫林琳. 多小区大规模MIMO系统中基于部分导频交替复用的导频污染减轻方法[J]. 信号处理, 2017, 33(8): 1104–1114. doi: 10.16798/j.issn.1003-0530.2017.08.011

    LI Mengwan, JING Xiaorong, and MO Linlin. Pilot contamination reduction method with alternately fractional pilot reuse for multi-cell massive MIMO Systems[J]. Journal of Signal Processing, 2017, 33(8): 1104–1114. doi: 10.16798/j.issn.1003-0530.2017.08.011
    ZHU Xudong, DAI Linglong, WANG Zhaocheng, et al. Weighted-Graph-Coloring-Based pilot decontamination for multicell massive MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2017, 66(3): 2829–2834. doi: 10.1109/TVT.2016.2572203
    AHN C W, RAMAKRISHNA R S, KANG C G, et al. Shortest path routing algorithm using Hopfield neural network[J]. Electronics Letters, 2001, 37(19): 1176–1178. doi: 10.1049/el:20010800
    SUN Ming, ZHAO Lin, CAO Wei, et al. Novel hysteretic noisy chaotic neural network for broadcast scheduling problems in packet radio networks[J]. IEEE Transactions on Neural Networks, 2010, 21(9): 1422–1433. doi: 10.1109/TNN.2010.2059041
    SUN Ming, LEE K Y, XU Yaoqun, et al. Hysteretic noisy chaotic neural networks for resource allocation in OFDMA system[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(2): 273–285. doi: 10.1109/TNNLS.2016.2618898
    MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590–3600. doi: 10.1109/TWC.2010.092810.091092
    周鹏, 赵春明, 盛彬. MIMO-OFDM系统中基于导频辅助的信道估计[J]. 电子与信息学报, 2007, 29(1): 133–137.

    ZHOU Peng, ZHAO Chunming, and SHENG Bin. Channel estimation based on pilot-assisted for MIMO-OFDM systems[J]. Journal of Electronics &Information Technology, 2007, 29(1): 133–137.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1759
  • HTML全文浏览量:  709
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-27
  • 修回日期:  2020-05-29
  • 网络出版日期:  2020-06-24
  • 刊出日期:  2020-10-13

目录

    /

    返回文章
    返回