A Distributed Heterogeneous Task Offloading Methodology for Mobile Edge Computing
-
摘要:
随着物联网(IoT)迅速发展,移动边缘计算(MEC)在提供高性能、低延迟计算服务方面的作用日益明显。然而,在面向IoT业务的MEC(MEC-IoT)时变环境中,不同边缘设备和应用业务在时延和能耗等方面具有显著的异构性,对高效的任务卸载及资源分配构成严峻挑战。针对上述问题,该文提出一种动态的分布式异构任务卸载算法(D2HM),该算法利用分布式博弈机制并结合李雅普诺夫优化理论,设计了一种资源的动态报价机制,并实现了对不同业务类型差异化控制和计算资源的弹性按需分配,仿真结果表明,所提的算法可以满足异构任务的多样化计算需求,并在保证网络稳定性的前提下降低系统的平均时延。
Abstract:With the rapid development of the Internet of Things (IoT), Mobile Edge Computing (MEC) becomes increasingly effective in improving processing capacity and providing low-latency computing services. However, in the time-varying MEC-IoT environment, heterogeneous devices and applications cause serious challenges on efficient task offloading and resource allocation. A Distributed Dynamic Heterogeneous task offloading Methodology (D2HM) algorithm is proposed in this paper by exploiting game theory and Lyapunov optimization, which can achieves heterogeneous control and allocation of computation resources by dynamic quote price mechanism. Simulation results show that the proposed algorithm can meet the diverse computing needs of heterogeneous tasks and reduce the average delay of the system while ensuring network stability.
-
CISCO. Cisco visual networking index: Forecast and trends, 2017–2022[R]. 2018. MOURA J and HUTCHISON D. Game theory for multi-access edge computing: Survey, use cases, and future trends[J]. IEEE Communications Surveys & Tutorials, 2019, 21(1): 260–288. doi: 10.1109/COMST.2018.2863030 YU Wei, LIANG Fan, HE Xiaofei, et al. A survey on the edge computing for the internet of things[J]. IEEE Access, 2018, 6: 6900–6919. doi: 10.1109/ACCESS.2017.2778504 YOU Changsheng, HUANG Kaibin, CHAE H, et al. Energy-efficient resource allocation for mobile-edge computation offloading[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1397–1411. doi: 10.1109/TWC.2016.2633522 代美玲, 刘周斌, 郭少勇, 等. 基于终端能耗和系统时延最小化的边缘计算卸载及资源分配机制[J]. 电子与信息学报, 2019, 41(11): 2684–2690. doi: 10.11999/JEIT180970DAI Meiling, LIU Zhoubin, GUO Shaoyong, et al. A computation offloading and resource allocation mechanism based on minimizing devices energy consumption and system delay[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2684–2690. doi: 10.11999/JEIT180970 WANG Shuo, ZHANG Xing, YAN Zhi, et al. Cooperative edge computing with sleep control under nonuniform traffic in mobile edge networks[J]. IEEE Internet of Things Journal, 2019, 6(3): 4295–4306. doi: 10.1109/JIOT.2018.2875939 张海波, 栾秋季, 朱江, 等. 基于移动边缘计算的V2X任务卸载方案[J]. 电子与信息学报, 2018, 40(11): 2736–2743. doi: 10.11999/JEIT180027ZHANG Haibo, LUAN Qiuji, ZHU Jiang, et al. V2X task offloading scheme based on mobile edge computing[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2736–2743. doi: 10.11999/JEIT180027 王汝言, 聂轩, 吴大鹏, 等. 社会属性感知的边缘计算任务调度策略[J]. 电子与信息学报, 2020, 42(1): 271–278. doi: 10.11999/JEIT190301WANG Ruyan, NIE Xuan, WU Dapeng, et al. Social attribute aware task scheduling strategy in edge computing[J]. Journal of Electronics &Information Technology, 2020, 42(1): 271–278. doi: 10.11999/JEIT190301 WANG Chang, DONG Chongwu, QIN Jinghui, et al. Energy-efficient offloading policy for resource allocation in distributed mobile edge computing[C]. 2018 IEEE Symposium on Computers and Communications, Natal, Brazil, 2018: 366–372. doi: 10.1109/ISCC.2018.8538612. HUU T T and THAM C K. An auction-based resource allocation model for green cloud computing[C]. 2013 IEEE International Conference on Cloud Engineering, Redwood City, USA, 2013: 269–278. doi: 10.1109/IC2E.2013.21. JIN Along, SONG Wei, and ZHUANG Weihua. Auction-based resource allocation for sharing cloudlets in mobile cloud computing[J]. IEEE Transactions on Emerging Topics in Computing, 2018, 6(1): 45–57. doi: 10.1109/TETC.2015.2487865 ZHOU Chongyu, THAM C K, and MOTANI M. Online auction for truthful stochastic offloading in mobile cloud computing[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8254630. LYU Xinchen, NI Wei, TIAN Hui, et al. Optimal schedule of mobile edge computing for internet of things using partial information[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(11): 2606–2615. doi: 10.1109/JSAC.2017.2760186 CAO Bin, XIA Shichao, HAN Jiawei, et al. A distributed game methodology for crowdsensing in uncertain wireless scenario[J]. IEEE Transactions on Mobile Computing, 2020, 19(1): 15–28. doi: 10.1109/TMC.2019.2892953 MAO Yuyi, ZHANG Jun, and LETAIEF K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3590–3605. doi: 10.1109/JSAC.2016.2611964 张海波, 李虎, 陈善学, 等. 超密集网络中基于移动边缘计算的任务卸载和资源优化[J]. 电子与信息学报, 2019, 41(5): 1194–1201. doi: 10.11999/JEIT180592ZHANG Haibo, LI Hu, CHEN Shanxue, et al. Computing offloading and resource optimization in ultra-dense networks with mobile edge computation[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1194–1201. doi: 10.11999/JEIT180592 CAO Bin, XIA Shichao, LI Yun, et al. An incentive-based workload assignment with power allocation in ad hoc cloud[C]. 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–6. doi: 10.1109/ICC.2017.7997026. NEELY M. Stochastic Network Optimization with Application to Communication and Queueing Systems[M]. Morgan & Claypool, 2010: 25–38. BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge, UK: Cambridge University Press, 2004: 326–327. doi: 10.1017/CBO9780511804441. WANG Beibei, HAN Zhu, and LIU K L R. Distributed relay selection and power control for multiuser cooperative communication networks using stackelberg game[J]. IEEE Transactions on Mobile Computing, 2009, 8(7): 975–990. doi: 10.1109/TMC.2008.153