高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于流量时空特征的fast-flux僵尸网络检测方法

牛伟纳 蒋天宇 张小松 谢娇 张俊哲 赵振扉

牛伟纳, 蒋天宇, 张小松, 谢娇, 张俊哲, 赵振扉. 基于流量时空特征的fast-flux僵尸网络检测方法[J]. 电子与信息学报, 2020, 42(8): 1872-1880. doi: 10.11999/JEIT190724
引用本文: 牛伟纳, 蒋天宇, 张小松, 谢娇, 张俊哲, 赵振扉. 基于流量时空特征的fast-flux僵尸网络检测方法[J]. 电子与信息学报, 2020, 42(8): 1872-1880. doi: 10.11999/JEIT190724
Weina NIU, Tianyu JIANG, Xiaosong ZHANG, Jiao XIE, Junzhe ZHANG, Zhenfei ZHAO. Fast-flux Botnet Detection Method Based on Spatiotemporal Feature of Network Traffic[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1872-1880. doi: 10.11999/JEIT190724
Citation: Weina NIU, Tianyu JIANG, Xiaosong ZHANG, Jiao XIE, Junzhe ZHANG, Zhenfei ZHAO. Fast-flux Botnet Detection Method Based on Spatiotemporal Feature of Network Traffic[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1872-1880. doi: 10.11999/JEIT190724

基于流量时空特征的fast-flux僵尸网络检测方法

doi: 10.11999/JEIT190724
基金项目: 国家重点研发计划(2016QY06X1205, 2018YFB0804050),国家自然科学基金(61572115)
详细信息
    作者简介:

    牛伟纳:女,1990年生,博士,讲师,研究方向为网络安全、软件安全、AI在网络安全安全中的应用

    蒋天宇:男,1995年生,硕士生,研究方向为网络安全、网络攻击检测

    张小松:男,1968年生,博士,教授,研究方向为大数据应用及安全、人工智能的应用与安全、移动计算安全、网络攻击的追踪溯源

    谢娇:女,1996年生,硕士生,研究方向为网络安全、网络攻击检测

    赵振扉:男,1991年生,硕士生,研究方向为网络安全、网络攻击检测

    通讯作者:

    张小松 johnsonzxs@uestc.edu.cn

  • 中图分类号: TP309

Fast-flux Botnet Detection Method Based on Spatiotemporal Feature of Network Traffic

Funds: The National Key Research and Development Program of China (2016QY06X1205, 2018YFB0804050), The National Natural Science Foundation of China (61572115)
  • 摘要:

    僵尸网络已成为网络空间安全的主要威胁之一,虽然目前可通过逆向工程等技术来对其进行检测,但是使用了诸如fast-flux等隐蔽技术的僵尸网络可以绕过现有的安全检测并继续存活。现有的fast-flux僵尸网络检测方法主要分为主动和被动两种,前者会造成较大的网络负载,后者存在特征值提取繁琐的问题。因此为了有效检测fast-flux僵尸网络并解决传统检测方法中存在的问题,该文结合卷积神经网络和循环神经网络,提出了基于流量时空特征的fast-flux僵尸网络检测方法。结合CTU-13和ISOT公开数据集的实验结果表明,该文所提检测方法和其他方法相比,准确率提升至98.3%,召回率提升至96.7%,精确度提升至97.5%。

  • 图  1  总体框架设计图

    图  2  模块预处理流程图

    图  3  正常流量和fast-flux流量的可视化结果

    图  4  Dense block设计

    图  5  DenseNet模型整体结构

    图  6  BiLSTM模型整体结构

    图  7  效果准确率对比

    图  8  效果精确率对比

    图  9  会话切割试验效果图

    图  10  流切割试验效果图

    图  11  图片大小试验结果

    图  12  准确率对比图

    图  13  召回率对比图

    图  14  精确度对比图

    表  1  实验硬件环境参数表

    硬件具体参数
    服务器戴尔PowerEdge R730XD
    内存4个金士顿16 GB
    处理器2个英特尔E5-2630
    硬盘东芝2 TB
    下载: 导出CSV

    表  2  实验软件环境参数表

    软件版本
    操作系统Cenos7
    编译器IntelliJ Idea
    GCC5.2.1
    TensorFlow1.1.1
    下载: 导出CSV

    表  3  数据集组成表

    数据类型CTU-13ISOT数据集自收集
    良性DNS流量513302874
    Fast-FluxDNS流量422940030
    下载: 导出CSV
  • OR K, RAVIV P, and GUY M. Digging deeper-an in-depth analysis of a fast flux network[EB/OL]. https://www.akamai.com/cn/zh/multimedia/documents/white-paper/digging-deeper-in-depth-analysis-of-fast-flux-network.pdf, 2017.
    蒋鸿玲, 邵秀丽, 李耀芳. 基于MapReduce的僵尸网络在线检测算法[J]. 电子与信息学报, 2013, 35(7): 1732–1738.

    JIANG Hongling, SHAO Xiuli, and LI Yaofang. Online botnet detection algorithm using MapReduce[J]. Journal of Electronics &Information Technology, 2013, 35(7): 1732–1738.
    ZANG Xiaodong, GONG Jian, MO Shaohuang, et al. Identifying fast-flux botnet with AGD names at the upper DNS hierarchy[J]. IEEE Access, 2018, 6: 69713–69727. doi: 10.1109/ACCESS.2018.2880884
    AL-DUWAIRI B, AL-HAMMOURI A, ALDWAIRI M, et al. GFlux: A google-based system for Fast Flux detection[C]. 2015 IEEE Conference on Communications and Network Security (CNS), Florence, Italy, 2015: 755–756. doi: 10.1109/CNS.2015.7346920.
    ALIEYAN K, ANBAR M, ALMOMANI A, et al. Botnets detecting attack based on DNS features[C]. 2018 International Arab Conference on Information Technology (ACIT), Werdanye, Lebanon, 2018: 1–4. doi: 10.1109/ACIT.2018.8672582.
    ALMOMANI A. Fast-flux hunter: A system for filtering online fast-flux botnet[J]. Neural Computing and Applications, 2018, 29(7): 483–493. doi: 10.1007/s00521-016-2531-1
    Al NAWASRAH A. Fast flux botnet detection based on adaptive dynamic evolving spiking neural network[D]. [Ph.D. dissertation], University of Salford, 2018.
    JIANG Cibin and LI J S. Exploring global IP-usage patterns in fast-flux service networks[J]. Journal of Computers, 2017, 12(4): 371–380.
    WANG Zhi, QIN Meilin, CHEN Mengqi, et al. Hiding fast flux botnet in plain email sight[C]. SecureComm 2017 International Workshops on Security and Privacy in Communication Networks, Niagara Falls, Canada, 2017: 182–197.
    REIMERS A C, BRUGGEMAN F J, OLIVIER B G, et al. Fast flux module detection using matroid theory[J]. Journal of Computational Biology, 2015, 22(5): 414–424. doi: 10.1089/cmb.2014.0141
    ERQUIAGA M J, CATANIA C, and GARCÍA S. Detecting DGA malware traffic through behavioral models[C]. 2016 IEEE Biennial Congress of Argentina (ARGENCON), Buenos Aires, Argentina, 2016: 1–6. doi: 10.1109/ARGENCON.2016.7585238.
    TORABI S, BOUKHTOUTA A, ASSI C, et al. Detecting internet abuse by analyzing passive DNS traffic: A survey of implemented systems[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 3389–3415. doi: 10.1109/COMST.2018.2849614
    HSU F H, WANG C S, HSU C H, et al. Detect fast-flux domains through response time differences[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(10): 1947–1956. doi: 10.1109/JSAC.2014.2358814
    CELIK Z B and MCDANIEL P. Extending detection with privileged information via generalized distillation[C]. 2018 IEEE Security and Privacy Workshops (SPW), San Francisco, USA, 2018: 83–88. doi: 10.1109/SPW.2018.00021.
    CHEN Wenlin, CHEN Yixin, and WEINBERGER K Q. Fast flux discriminant for large-scale sparse nonlinear classification[C]. The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2014: 621–630.
    田生伟, 周兴发, 禹龙, 等. 基于双向LSTM的维吾尔语事件因果关系抽取[J]. 电子与信息学报, 2018, 40(1): 200–208. doi: 10.11999/JEIT170402

    TIAN Shengwei, ZHOU Xingfa, YU Long, et al. Causal relation extraction of Uyghur events based on bidirectional Long Short-term Memory model[J]. Journal of Electronics &Information Technology, 2018, 40(1): 200–208. doi: 10.11999/JEIT170402
    CTU University. MCFP Dataset-Malware Capture facility project[EB/OL]. https://mcfp.weebly.com/mcfp-dataset.html, 2018.
    University of Victoria. ISOT Botnet dataset[EB/OL]. https://www.uvic.ca/engineering/ece/isot/datasets/index.php, 2010.
    LOMBARDO P, SAELI S, BISIO F, et al. Fast flux service network detection via data mining on passive DNS traffic[C]. The 21st International Conference on Information Security, Guildford, UK, 2018: 463–480. doi: 10.1007/978-3-319-99136-8_25.
    CHAHAL P S and KHURANA S S. TempR: Application of stricture dependent intelligent classifier for fast flux domain detection[J]. International Journal of Computer Network and Information Security, 2016, 8(10): 37–44. doi: 10.5815/ijcnis.2016.10.05
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  2820
  • HTML全文浏览量:  1788
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-19
  • 修回日期:  2020-04-18
  • 网络出版日期:  2020-05-12
  • 刊出日期:  2020-08-18

目录

    /

    返回文章
    返回