高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间分布分析的混合失真无参考图像质量评价

陈勇 朱凯欣 房昊 刘焕淋

陈勇, 朱凯欣, 房昊, 刘焕淋. 基于空间分布分析的混合失真无参考图像质量评价[J]. 电子与信息学报, 2020, 42(10): 2533-2540. doi: 10.11999/JEIT190721
引用本文: 陈勇, 朱凯欣, 房昊, 刘焕淋. 基于空间分布分析的混合失真无参考图像质量评价[J]. 电子与信息学报, 2020, 42(10): 2533-2540. doi: 10.11999/JEIT190721
Yong CHEN, Kaixin ZHU, Hao FANG, Huanlin LIU. No-reference Image Quality Evaluation for Multiply-distorted Images Based on Spatial Domain Coding[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2533-2540. doi: 10.11999/JEIT190721
Citation: Yong CHEN, Kaixin ZHU, Hao FANG, Huanlin LIU. No-reference Image Quality Evaluation for Multiply-distorted Images Based on Spatial Domain Coding[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2533-2540. doi: 10.11999/JEIT190721

基于空间分布分析的混合失真无参考图像质量评价

doi: 10.11999/JEIT190721
基金项目: 国家自然科学基金(51977021)
详细信息
    作者简介:

    陈勇:男,1963年生,博士,教授,研究方向为图像处理

    朱凯欣:女,1994年,硕士生,研究方向为无参考图像质量评价和立体图像质量评价

    房昊:男,1993年,硕士,研究方向为无参考图像质量评价

    刘焕淋:女,1970年生,博士,教授,研究方向为信号处理等方面

    通讯作者:

    陈勇 chenyong@cqupt.edu.cn

  • 中图分类号: TN911.73; TP391.41

No-reference Image Quality Evaluation for Multiply-distorted Images Based on Spatial Domain Coding

Funds: The National Natural Science Foundation of China (51977021)
  • 摘要: 针对难以准确有效地提取混合失真图像质量特征的问题,该文提出一种基于空间分布分析的图像质量评价方法。首先将图像进行亮度系数归一化处理,然后将图像进行分块,利用卷积神经网络(CNN)进行端对端的深度学习,采用多层次卷积核堆叠的方法获取图像的质量感知特征,并通过全连接层将特征映射到图像块的质量分数。再将块质量分数汇总获取质量池,通过对质量池中局部质量的空间分布情况进行分析,提取能够表征其空间分布情况的特征,然后采用神经网络建立局部质量到整体质量的映射模型,将图像的局部质量进行汇总。最后在MLIVE, MDID2013, MDID2016混合失真图像库中进行性能测试以及与相关的对比算法进行比较,验证了该算法的有效性。
  • 图  1  CNN中各层网络结构

    图  2  “baby girl”失真图像与其可视化质量池

    图  3  质量池与其直方图统计

    图  4  基于空间分布分析的图像质量评价方法流程图

    图  5  算法的收敛性

    图  6  MLIVE失真图像的客观评价值与DMOS的散点图

    表  1  混合失真图像库描述

    图像库参考图像失真类型图像数主观评分
    MLIVE15模糊+噪声/模糊+JPEG压缩4500-100(DMOS)
    MDID201312模糊+噪声+JPEG压缩3240-1(DMOS)
    MDID201620模糊+噪声+对比度+JPEG压缩+JP2K压缩16000-8(MOS)
    下载: 导出CSV

    表  2  MLIVE图像库中各特征性有效性实验

    特征PLCCSROCCKROCC
    均值0.9510.9410.753
    方差0.7950.7400.625
    偏斜度0.5700.4720.334
    峰度0.4610.4930.348
    整体评价0.9610.9510.781
    下载: 导出CSV

    表  3  不同图像库中算法性能测试

    图像库PLCCSROCCKROCCRMSE
    MLIVE(Part1)0.9690.9560.8224.502
    MLIVE(Part2)0.9570.9420.7844.944
    MLIVE(All)0.9610.9510.7814.831
    MDID20130.9350.9220.7550.017
    MDID20160.9210.9170.7490.756
    下载: 导出CSV

    表  4  算法性能对比实验

    算法MLIVE(450 images)MDID2013(324 images)
    PLCCSROCCRMSEPLCCSROCCRMSE
    PSNRFR0.7400.67712.7240.5610.5600.042
    SSIMFR0.9260.9026.7970.4570.4500.045
    VIF[18]FR0.9320.9156.7610.9150.9050.020
    BRISQUE[5]NR0.9240.9007.1430.8330.8190.027
    NFERM[6]NR0.9170.8987.4590.8710.8550.024
    GWH-LBP[7]NR0.9490.9448.8730.9130.9080.019
    HOSA[8]NR0.9260.9026.9740.8920.8720.021
    Zhou[10]NR0.9510.9435.7470.9190.9070.019
    CORNIA[11]NR0.9160.9007.5860.9040.8980.020
    NIQE[19]NR0.8390.77510.2940.5630.5450.042
    SISBLM[20]NR0.8950.8788.4390.8140.8080.030
    本文算法NR0.9610.9514.8310.9350.9220.017
    下载: 导出CSV

    表  5  各算法时间复杂度对比实验(s)

    算法SSIMVIFGWH-LBPSISBLM本文算法
    时间0.1025.2360.6572.4860.842
    下载: 导出CSV
  • GU Ke, TAO Dacheng, QIAO Junfei, et al. Learning a no-reference quality assessment model of enhanced images with big data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(4): 1301–1313. doi: 10.1109/TNNLS.2017.2649101
    FREITAS P G, AKAMINE W Y L, and FARIAS M C Q. No-Reference image quality assessment using orthogonal color planes patterns[J]. IEEE Transactions on Multimedia, 2018, 20(12): 3353–3360. doi: 10.1109/TMM.2018.2839529
    张敏辉, 杨剑. 评价SAR图像去噪效果的无参考图像质量指标[J]. 重庆邮电大学学报: 自然科学版, 2018, 30(4): 530–536. doi: 10.3979/j.issn.1673-825X.2018.04.014

    ZHANG Minhui and YANG Jian. A new referenceless image quality index to evaluate denoising performance of SAR images[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2018, 30(4): 530–536. doi: 10.3979/j.issn.1673-825X.2018.04.014
    徐弦秋, 刘宏清, 黎勇, 等. 基于RGB通道下模糊核估计的图像去模糊[J]. 重庆邮电大学学报: 自然科学版, 2018, 30(2): 216–221. doi: 10.3979/j.issn.1673-825X.2018.02.009

    XU Xianqiu, LIU Hongqing, LI Yong, et al. Image deblurring with blur kernel estimation in RGB channels[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2018, 30(2): 216–221. doi: 10.3979/j.issn.1673-825X.2018.02.009
    MITTAL A, MOORTHY A K, and BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695–4708. doi: 10.1109/TIP.2012.2214050
    GU Ke, ZHAI Guangtao, YANG Xiaokang, et al. Using free energy principle for blind image quality assessment[J]. IEEE Transactions on Multimedia, 2015, 17(1): 50–63. doi: 10.1109/TMM.2014.2373812
    LI Qiaohong, LIN Weisi, and FANG Yuming. No-reference quality assessment for multiply-distorted images in gradient domain[J]. IEEE Signal Processing Letters, 2016, 23(4): 541–545. doi: 10.1109/LSP.2016.2537321
    DAI Tao, GU Ke, NIU Li, et al. Referenceless quality metric of multiply-distorted images based on structural degradation[J]. Neurocomputing, 2018, 290: 185–195. doi: 10.1016/j.neucom.2018.02.050
    JIA Sen and ZHANG Yang. Saliency-based deep convolutional neural network for no-reference image quality assessment[J]. Multimedia Tools and Applications, 2018, 77(12): 14859–14872. doi: 10.1007/s11042-017-5070-6
    ZHOU Wujie, YU Lu, QIAN Yaguan, et al. Deep blind quality evaluator for multiply distorted images based on monogenic binary coding[J]. Journal of Visual Communication and Image Representation, 2019, 60: 305–311. doi: 10.1016/j.jvcir.2019.03.001
    YE Peng, KUMAR J, KANG Le, et al. Unsupervised feature learning framework for no-reference image quality assessment[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 1098–1105. doi: 10.1109/CVPR.2012.6247789.
    BOUREAU Y L, BACH F, LECUN Y, et al. Learning mid-level features for recognition[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2559–2566. doi: 10.1109/CVPR.2010.5539963.
    孙娅楠, 林文斌. 梯度下降法在机器学习中的应用[J]. 苏州科技大学学报: 自然科学版, 2018, 35(2): 26–31. doi: 10.12084/j.issn.2096-3289.2018.02.006

    SUN Yanan and LIN Wenbin. Application of gradient descent method in machine learning[J]. Journal of Suzhou University of Science and Technology:Natural Science, 2018, 35(2): 26–31. doi: 10.12084/j.issn.2096-3289.2018.02.006
    JAYARAMAN D, MITTAL A, MOORTHY A K, et al. Objective quality assessment of multiply distorted images[C]. 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2012: 1693–1697. doi: 10.1109/ACSSC.2012.6489321.
    GU Ke, ZHAI Guangtao, YANG Xiaokang, et al. Hybrid no-reference quality metric for singly and multiply distorted images[J]. IEEE Transactions on Broadcasting, 2014, 60(3): 555–567. doi: 10.1109/TBC.2014.2344471
    SUN Wen, ZHOU Fei, and LIAO Qingmin. MDID: A multiply distorted image database for image quality assessment[J]. Pattern Recognition, 2017, 61: 153–168. doi: 10.1016/j.patcog.2016.07.033
    ZHANG Min, MURAMATSU C, ZHOU Xiangrong, et al. Blind image quality assessment using the joint statistics of generalized local binary pattern[J]. IEEE Signal Processing Letters, 2015, 22(2): 207–210. doi: 10.1109/LSP.2014.2326399
    SHEIKH H R and BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430–444. doi: 10.1109/TIP.2005.859378
    MITTAL A, SOUNDARARAJAN R, and BOVIK A C. Making a "completely blind" image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209–212. doi: 10.1109/LSP.2012.2227726
    LI Qiaohong, LIN Weisi, XU Jingtao, et al. Blind image quality assessment using statistical structural and luminance features[J]. IEEE Transactions on Multimedia, 2016, 18(12): 2457–2469. doi: 10.1109/TMM.2016.2601028
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  2899
  • HTML全文浏览量:  938
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-17
  • 修回日期:  2020-02-16
  • 网络出版日期:  2020-03-09
  • 刊出日期:  2020-10-13

目录

    /

    返回文章
    返回