高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于卷积长短时记忆网络的心律失常分类方法

柯丽 王丹妮 杜强 姜楚迪

柯丽, 王丹妮, 杜强, 姜楚迪. 基于卷积长短时记忆网络的心律失常分类方法[J]. 电子与信息学报, 2020, 42(8): 1990-1998. doi: 10.11999/JEIT190712
引用本文: 柯丽, 王丹妮, 杜强, 姜楚迪. 基于卷积长短时记忆网络的心律失常分类方法[J]. 电子与信息学报, 2020, 42(8): 1990-1998. doi: 10.11999/JEIT190712
Li KE, Danni WANG, Qiang DU, Chudi JIANG. Arrhythmia Classification Based on Convolutional Long Short Term Memory Network[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1990-1998. doi: 10.11999/JEIT190712
Citation: Li KE, Danni WANG, Qiang DU, Chudi JIANG. Arrhythmia Classification Based on Convolutional Long Short Term Memory Network[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1990-1998. doi: 10.11999/JEIT190712

基于卷积长短时记忆网络的心律失常分类方法

doi: 10.11999/JEIT190712
基金项目: 国家自然科学基金(51377109),辽宁省自然科学基金(2019-ZD-0204)
详细信息
    作者简介:

    柯丽:女,1977年生,博士,教授,博士生导师,研究方向为生物电工与阻抗成像技术

    王丹妮:女,1995年生,硕士生,研究方向为医学信号处理与分析

    杜强:男,1975年生,博士,讲师,研究方向为生物医学信号检测与处理

    姜楚迪:女,1996年生,硕士生,研究方向为医学电磁工程及医疗仪器

    通讯作者:

    柯丽 keli@sut.edu.cn

  • 中图分类号: TP391; R540.41

Arrhythmia Classification Based on Convolutional Long Short Term Memory Network

Funds: The National Natural Science Foundation of China (51377109), The Natural Science Foundation of Liaoning Province (2019-ZD-0204)
  • 摘要:

    心律失常等慢性心血管疾病严重影响人类健康,采用心电信号(ECG)实现心律失常自动分类可有效提高该类疾病的诊断效率,降低人工成本。为此,该文基于1维心电信号,提出一种改进的长短时记忆网络(LSTM)方法实现心律失常自动分类。该方法首先设计深层卷积神经网络(CNN)对心电信号进行深度编码,提取心电信号形态特征。其次,搭建长短时记忆分类网络实现基于心电信号特征的心律失常自动分类。基于MIT-BIH心律失常数据库进行的实验结果表明,该方法显著缩短分类时间,并获得超过99.2%的分类准确率,灵敏度等评价参数均得到不同程度的提高,满足心电信号自动分类实时高效的要求。

  • 图  1  心电信号预处理

    图  2  C-LSTM网络结构

    图  3  各类别心电信号分段结果

    图  4  CNN提取到的信号特征

    图  5  网络训练和验证性能图

    图  6  网络测试集混淆矩阵

    表  1  CNN模型的细节和参数

    层数层名称卷积核大小卷积核个数激活函数步长参数输出大小
    0输入300×1
    11维卷积5×116ReLU196300×16
    2批归一化128300×16
    31维卷积5×116ReLU11424300×16
    4批归一化1456300×16
    5最大池化216232150×16
    61维卷积3×132ReLU13024150×32
    7批归一化3088150×32
    81维卷积3×132ReLU16192150×32
    9批归一化6256150×32
    10最大池化23226475×32
    111维卷积5×164ReLU11656075×64
    12批归一化1668875×64
    131维卷积5×11ReLU12880075×1
    14批归一化2892875×1
    15最大池化212238×1
    下载: 导出CSV

    表  2  LSTM模型的细节和参数

    层名称隐含单元激活函数参数
    长短时记忆层3212
    全连接256ReLU9996
    全连接5Softmax11024
    下载: 导出CSV

    表  3  AAMI标准在心电信号分类中描述

    AAMI类别类别数量MIT-BIH心跳节拍类别
    Normal(N)89972正常(NOR)
    左束支传导阻塞(LBBB)
    右束支传导阻塞(RBBB)
    房性逸搏(AE)
    结性逸搏(NE)
    Supraventricular(S)2758房性早搏(AP)
    异常房性早搏(aAP)
    交界性早搏(NP)
    室上性早搏(SP)
    Ventricular(V)7140室性早搏(PVC)
    室性逸搏(VE)
    Fusion(F)800心室融合心跳(fVN)
    Unknown(Q)30起搏心跳(P)
    起搏融合心跳(fPN)
    未分类心跳(U)
    下载: 导出CSV

    表  4  LSTM网络和C-LSTM网络测试集的相关评价参数(%)

    网络评价参数模型类别
    NSVFQ
    LSTMAcc99.5499.6299.4499.7199.97
    Sen99.8791.0695.6680.190
    Spe96.9199.8699.7699.5899.99
    PPV99.6195.0997.0078.700.00
    C-LSTMAcc99.5299.6199.5199.8499.97
    Sen99.7892.1196.6388.520
    Spe98.3699.8399.7399.9399.99
    PPV99.6894.0896.4591.530.00
    下载: 导出CSV

    表  5  自动检测心律失常分类结果性能比较

    研究类型分类器信号长度性能(%)
    AccSenSpePPV
    文献[19]4FFNN250 samples (0.69 s)96.9497.7896.31
    文献[17]17KNN360 samples (1.00 s)97.0097.1096.90
    文献[18]5SVM+RBF200 samples (0.56 s)98.9198.9197.85
    文献[4]14NPE+SVM300 samples (0.83 s)98.5198.5198.51
    文献[11]5CNN360 samples (1.00 s)94.0396.7191.5497.86
    文献[20]4SVM8×107198.3996.8698.9296.85
    文献[12]5CNN73×7398.4272.0697.8365.91
    文献[15]5FCMDBN200 samples (0.56 s)96.5494.5593.3193.91
    文献[14]2CNN+RNN211×2495.7687.8587.8594.99
    本文方法5LSTM300 sample (0.83 s)99.1491.7099.2292.60
    C-LSTM300 →38 samples(0.83 s)→(0.12 s)99.2394.2699.5795.44
    下载: 导出CSV
  • World Health Organization. Cardiovascular diseases[EB/OL]. https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1, 2017.
    YE Can, KUMAR B V K V, and COIMBRA M T. Heartbeat classification using morphological and dynamic features of ECG signals[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(10): 2930–2941. doi: 10.1109/tbme.2012.2213253
    YILDIRIM Ö. ECG beat detection and classification system using wavelet transform and online sequential ELM[J]. Journal of Mechanics in Medicine and Biology, 2019, 19(1): 1940008. doi: 10.1142/S0219519419400086
    高兴姣, 李智, 陈珊珊, 等. 基于近邻保持嵌入算法的心律失常心拍分类[J]. 生物医学工程学杂志, 2017, 34(1): 1–6. doi: 10.7507/1001-5515.201605045

    GAO Xingjiao, LI Zhi, CHEN Shanshan, et al. Arrhythmia heartbeats classification based on neighborhood preserving embedding algorithm[J]. Journal of Biomedical Engineering, 2017, 34(1): 1–6. doi: 10.7507/1001-5515.201605045
    AHMED R and ARAFAT S. Cardiac arrhythmia classification using hierarchical classification model[C]. The 6th International Conference on Computer Science and Information Technology (CSIT), Amman, Jordan, 2014: 203–207. doi: 10.1109/CSIT.2014.6806001.
    BALOUCHESTANI M, SUGAVANESWARAN L, and KRISHNAN S. Advanced K-means clustering algorithm for large ECG data sets based on K-SVD approach[C]. The 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP), Manchester, UK, 2014: 177–182. doi: 10.1109/CSNDSP.2014.6923820.
    LI Duan, ZHANG Hongxin, and ZHANG Mingming. Wavelet de-noising and genetic algorithm-based least squares twin SVM for classification of arrhythmias[J]. Circuits, Systems, and Signal Processing, 2017, 36(7): 2828–2846. doi: 10.1007/s00034-016-0439-8
    YIN Xi and LIU Xiaoming. Multi-task convolutional neural network for pose-invariant face recognition[J]. IEEE Transactions on Image Processing, 2018, 27(2): 964–975. doi: 10.1109/TIP.2017.2765830
    王斐, 吴仕超, 刘少林, 等. 基于脑电信号深度迁移学习的驾驶疲劳检测[J]. 电子与信息学报, 2019, 41(9): 2264–2272. doi: 10.11999/JEIT180900

    WANG Fei, WU Shichao, LIU Shaolin, et al. Driver fatigue detection through deep transfer learning in an electroencephalogram-based system[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2264–2272. doi: 10.11999/JEIT180900
    MENG Huanhuan and ZHANG Yue. Classification of electrocardiogram signals with deep belief networks[C]. The 17th International Conference on Computational Science and Engineering, Chengdu, China, 2014: 7–12. doi: 10.1109/CSE.2014.36.
    ACHARYA U R, OH S L, HAGIWARA Y, et al. A deep convolutional neural network model to classify heartbeats[J]. Computers in Biology and Medicine, 2017, 89: 389–396. doi: 10.1016/j.compbiomed.2017.08.022
    ZHAI Xiaolong and TIN C. Automated ECG classification using dual heartbeat coupling based on convolutional neural network[J]. IEEE Access, 2018, 6: 27465–27472. doi: 10.1109/ACCESS.2018.2833841
    CHENG Maowei, SORI W J, JIANG Feng, et al. Recurrent neural network based classification of ecg signal features for obstruction of sleep apnea detection[C]. 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 2017, 199–202. doi: 10.1109/CSE-EUC.2017.220.
    TAN J H, HAGIWARA Y, PANG W, et al. Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals[J]. Computers in Biology and Medicine, 2018, 94: 19–26. doi: 10.1016/j.compbiomed.2017.12.023
    吴志勇, 丁香乾, 许晓伟, 等. 基于深度学习和模糊C均值的心电信号分类方法[J]. 自动化学报, 2018, 44(10): 1913–1920. doi: 10.16383/j.aas.2018.c170417

    WU Zhiyong, DING Xiangqian, XU Xiaowei, et al. A method for ECG classification using deep learning and fuzzy C-means[J]. Acta Automatica Sinica, 2018, 44(10): 1913–1920. doi: 10.16383/j.aas.2018.c170417
    HANNUN A Y, RAJPURKAR P, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nature Medicine, 2019, 25(1): 65–69. doi: 10.1038/s41591-018-0268-3
    PARK J, LEE K, and KANG K. Arrhythmia detection from heartbeat using k-nearest neighbor classifier[C]. 2013 IEEE International Conference on Bioinformatics and Biomedicine, Shanghai, China, 2013: 15–22. doi: 10.1109/BIBM.2013.6732594.
    ELHAJ F A, SALIM N, HARRIS A R, et al. Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals[J]. Computer Methods and Programs in Biomedicine, 2016, 127: 52–63. doi: 10.1016/j.cmpb.2015.12.024
    GÜLER I and ÜBEYLI E D. ECG beat classifier designed by combined neural network model[J]. Pattern Recognition, 2005, 38(2): 199–208. doi: 10.1016/j.patcog.2004.06.009
    SAHOO S, KANUNGO B, BEHERA S, et al. Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities[J]. Measurement, 2017, 108: 55–66. doi: 10.1016/j.measurement.2017.05.022
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  5191
  • HTML全文浏览量:  2711
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-16
  • 修回日期:  2020-02-20
  • 网络出版日期:  2020-03-23
  • 刊出日期:  2020-08-18

目录

    /

    返回文章
    返回