高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于干扰信号带外分量卷积反演的邻道干扰抑制

霍晓磊 赵宏志 刘颖 李晓辉 王欣 唐友喜

霍晓磊, 赵宏志, 刘颖, 李晓辉, 王欣, 唐友喜. 基于干扰信号带外分量卷积反演的邻道干扰抑制[J]. 电子与信息学报, 2020, 42(10): 2437-2444. doi: 10.11999/JEIT190704
引用本文: 霍晓磊, 赵宏志, 刘颖, 李晓辉, 王欣, 唐友喜. 基于干扰信号带外分量卷积反演的邻道干扰抑制[J]. 电子与信息学报, 2020, 42(10): 2437-2444. doi: 10.11999/JEIT190704
Xiaolei HUO, Hongzhi ZHAO, Ying LIU, Xiaohui LI, Xin WANG, Youxi TANG. Adjacent Channel Interference Suppression Based on Deconvolution of Interference Signal’s Out-of-band Component[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2437-2444. doi: 10.11999/JEIT190704
Citation: Xiaolei HUO, Hongzhi ZHAO, Ying LIU, Xiaohui LI, Xin WANG, Youxi TANG. Adjacent Channel Interference Suppression Based on Deconvolution of Interference Signal’s Out-of-band Component[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2437-2444. doi: 10.11999/JEIT190704

基于干扰信号带外分量卷积反演的邻道干扰抑制

doi: 10.11999/JEIT190704
基金项目: 国家自然科学基金(61771107, 61701075, 61601064, 61531009),国家重点研发计划(2018YFB1801903),四川科技计划(2019JDRC0006)
详细信息
    作者简介:

    霍晓磊:男,1980年生,博士生,主要研究方向为无线信号处理、通信抗干扰技术

    赵宏志:男,1978年生,教授,博士生导师,主要研究方向为通信抗干扰技术、并行化信号处理

    刘颖:男,1985年生,讲师,主要研究方向为数字预失真、无线信号处理

    李晓辉:男,1978年生,讲师,主要研究方向为无线通信技术、指挥控制系统

    王欣:女,1983年生,讲师,主要研究方向为指挥控制系统、通信抗干扰技术

    唐友喜:男,1964年生,教授,博士生导师,主要研究方向为信号处理、传感器网络

    通讯作者:

    赵宏志 lyn@uestc.edu.cn

  • 中图分类号: TN92

Adjacent Channel Interference Suppression Based on Deconvolution of Interference Signal’s Out-of-band Component

Funds: The National Natural Science Foundation of China (61771107, 61701075, 61601064, 61531009), The National Key R&D Program of China (2018YFB1801903), Sichuan Science and Technology Program (2019JDRC0006)
  • 摘要: 邻道干扰(ACI)抑制中需要获取干扰信号非线性特征进行信号重建与抵消,因此接收机需使用高速率宽带模数转换器(ADC)采集干扰信号,这将大幅增加接收机成本。针对上述问题,该文提出一种采用干扰信号带外分量卷积反演的邻道干扰抑制方法,利用接收的干扰信号带外非线性分量,计算并消除相邻帧之间的影响,由窄带部分卷积信号帧构造出线性卷积信号帧,然后用正则化最小二乘方法恢复原始非线性宽带干扰信号,从而降低ADC采样率。仿真验证结果表明当采样率仅为传统方案1/3,所提方法带来的残余干扰不高于底噪6 dB。
  • 图  1  卷积反演架构邻道干扰抑制接收机

    图  2  卷积反演电路框图

    图  3  卷积反演信号频谱示意图

    图  4  输入邻道干扰INR同信号恢复误差的关系

    图  5  INR为40 dB时反演信号及残余干扰频谱

    图  6  INR为60 dB时反演信号及残余干扰频谱

    图  7  接收信号INR同邻道干扰抑制能力关系

    表  1  仿真实验参数设置

    项目指标参数值
    信号帧长2.56 ms
    信号带宽25 kHz
    滤波器阶数60
    采样频率125 kHz
    阻带频率1/通带频率120/30 kHz
    通带频率2/阻带频率250/60 kHz
    阻带衰减50 dB
    下载: 导出CSV

    表  2  仿真系统参数设置

    项目指标参数值
    信号带宽25 kHz
    信道带宽50 kHz
    发射功率18 dBm
    干扰信号SNR70~110 dB
    邻道干扰INR40~80 dB
    下载: 导出CSV
  • ZHOU Ping, LU Yinghua, TAO Yong, et al. Simulation analysis on co-site interference of vehicular digital communication system based on IM prediction method by BER[J]. The Journal of China Universities of Posts and Telecommunications, 2016, 23(1): 31–41. doi: 10.1016/S1005-8885(16)60005-5
    HAN Ting, HAN Bingjun, ZHANG Lin, et al. Coexistence study for wifi and zigbee under smart home scenarios[C]. IEEE International Conference on Network Infrastructure and Digital Content, Beijing, China, 2012: 669-674. doi: 10.1109/ICNIDC.2012.6418840.
    IEEE. IEEE 802.11-2007 Wireless LAN medium access control (MAC) and physical layer (PHY) specifications[S]. IEEE, 2007.
    NIKITIN A V, DAVIDCHACK R L, and SMITH J E. Out-of-band and adjacent-channel interference reduction by analog nonlinear filters[J]. EURASIP Journal on Advances in Signal Processing, 2015, 2015(1): 12. doi: 10.1186/s13634-015-0202-5
    刘建成, 全厚德, 孙慧贤, 等. 近距离无线电台邻道干扰的功率谱解析[J]. 电讯技术, 2017, 57(3): 306–310. doi: 10.3969/j.issn.1001-893x.2017.03.010

    LIU Jiancheng, QUAN Houde, SUN Huixian, et al. Power spectrum resolution of adjacent channel interference for collocated wireless radios[J]. Telecommunication Engineering, 2017, 57(3): 306–310. doi: 10.3969/j.issn.1001-893x.2017.03.010
    武南开, 苏东林, 何洪涛, 等. 机载超短波电台邻道干扰减敏特性建模与评估[J]. 北京航空航天大学学报, 2017, 43(3): 481–487. doi: 10.13700/j.bh.1001-5965.2016.0230

    WU Nankai, SU Donglin, HE Hongtao, et al. Adjacent channel interference modeling and assessment on reduction of airborne VHF radio sensitivity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3): 481–487. doi: 10.13700/j.bh.1001-5965.2016.0230
    XUE Zhen, WANG Jinlong, SHI Qingjiang, et al. Time-frequency scheduling and power optimization for reliable multiple UAV communications[J]. IEEE Access, 2018, 6: 3992–4005. doi: 10.1109/ACCESS.2018.2790933
    霍晓磊, 赵宏志, 刘颖, 等. 基于抵消技术的邻道干扰抑制[J]. 系统工程与电子技术, 2019, 41(11): 2611–2618.

    HUO Xiaolei, ZHAO Hongzhi, LIU Ying, et al. Adjacent channel interference suppression based on cancellation technology[J]. Systems Engineering and Electronics, 2019, 41(11): 2611–2618.
    ROBLIN P, QUINDROIT C, NARAHARISETTI N, et al. Concurrent linearization: The state of the art for modeling and linearization of multiband power amplifiers[J]. IEEE Microwave Magazine, 2013, 14(7): 75–91. doi: 10.1109/MMM.2013.2281297
    LIU Ying, HUANG Chuang, QUAN Xin, et al. Novel linearization architecture with limited ADC dynamic range for green power amplifiers[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3902–3914. doi: 10.1109/JSAC.2016.2600415
    LIU Ying, PAN Wensheng, SHAO Shihai, et al. A new digital predistortion for wideband power amplifiers with constrained feedback bandwidth[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(12): 683–685. doi: 10.1109/LMWC.2013.2284786
    MA Yuelin, YAMAO Y, AKAIWA Y, et al. Wideband digital predistortion using spectral extrapolation of band-limited feedback signal[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61(7): 2088–2097. doi: 10.1109/TCSI.2013.2295897
    PAN Wensheng, LIU Ying, SHAO Shihai, et al. A method to reduce sampling rate of the ADC in feedback channel for wideband digital predistortion[J]. Circuits, Systems, and Signal Processing, 2014, 33(8): 2655–2665. doi: 10.1007/s00034-014-9751-3
    LIU Ying, PAN Wensheng, SHAO Shihai, et al. A general digital predistortion architecture using constrained feedback bandwidth for wideband power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(5): 1544–1555. doi: 10.1109/TMTT.2015.2416184
    YU Xin. Digital predistortion using feedback signal with incomplete spectral information[C]. 2012 Asia Pacific Microwave Conference, Kaohsiung, China, 2012: 950–952. doi: 10.1109/APMC.2012.6421788.
    邹谋炎. 反卷积和信号复原[M]. 北京: 国防工业出版社, 2001: 10-160.

    ZOU Mouyan. Deconvolution and Signal Recovery[M]. Beijing: National Defense Industry Press, 2001: 10-160.
    HANSEN P C. Analysis of discrete ill-posed problems by means of the L-curve[J]. SIAM Review, 1992, 34(4): 561–580. doi: 10.1137/1034115
    GOLUB G H, HEATH M, and WAHBA H G. Generalized cross-validation as a method for choosing a good ridge parameter[J]. Technometrics, 1979, 21(2): 215–223. doi: 10.1080/00401706.1979.10489751
    HANSEN P C. REGULARIZATION TOOLS: A matlab package for analysis and solution of discrete ill-posed problems[J]. Numerical Algorithms, 1994, 6(1): 1–35. doi: 10.1007/BF02149761
    DING Lei, ZHOU G T, MORGAN D R, et al. A robust digital baseband predistorter constructed using memory polynomials[J]. IEEE Transactions on Communications, 2004, 52(1): 159–165. doi: 10.1109/TCOMM.2003.822188
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  3473
  • HTML全文浏览量:  940
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-10
  • 修回日期:  2020-02-28
  • 网络出版日期:  2020-04-07
  • 刊出日期:  2020-10-13

目录

    /

    返回文章
    返回