Construction of Optimal Zero Correlation Zone Aperiodic Complementary Sequence Sets
-
摘要:
该文基于正交序列集,研究了一类新的零相关区(ZCZ)非周期互补序列(ZACS)集构造方法,所得到的序列集参数达到最优,且在满足Z|N的条件下零相关区长度可以灵活选择。该方法所构造的序列具有理想的自相关性能和组内互补特性。通过调整参数q,可得到多个不同的序列集。同时,基于多电平完备序列,给出了一类高斯整数正交序列集的构造方法,得到的高斯整数正交序列集可以用于非周期互补序列集的构造。所提方法构造的零相关区非周期互补序列集用于多载波码分多址系统中可以降低多径干扰、多址干扰,也可以作为训练序列用于多输入多输出信道估计中。
Abstract:The construction of ZCZ Aperiodic Complementary Sequence (ZACS) sets are researched based on orthogonal matrices. The proposed approach can provide optimal ZACS sets and the length of ZCZ can be chosen flexibly under the condition of Z|N. The resultant sequence sets have ideal autocorrelation properties and intra-group complementary properties. By adjusting the parameter q, different ZACS sets can be obtained. Moreover, based on the multilevel perfect sequence over integer, Gaussian integer orthogonal matrix is constructed which can be used as the initial sequence in the construction of ZACS. The sequence sets can be applied to Multi-Carrier Code Division Multiple Access (MC-CDMA) system to remove multipath interference and multiple access interference. Furthermore, it can be used as training sequence in Multiple Input Multiple Output (MIMO) channel estimation.
-
表 1 零相关区非周期互补序列集参数比较
文献定理 构造基础 结果序列参数 是否达到最优 ZCZ选择是否灵活 文献[8]方法1 正交矩阵${{A}_{{Q} \times {Q}}}$和${{H}_{{L} \times {L}}}$, $Q = pZ$,$L = NZ$ $(pNZ,Z){\rm{ACS}}_Q^L$ 是 是 文献[9] 格雷序列和正交矩阵${{U}_{{V} \times {V}}}$ $(KL,Z){\rm{ACS}}_N^{KZ}$ $L = N$时最优 是 文献[10] 完备互补序列集${\rm{PC}}(M,L)$和正交矩阵${{A}_{{P} \times {P}}}$ $([M,P],L){\rm{IGC}}_M^{LP}$ 是 否 文献[12] 完备互补序列集${\rm{PC}}(M,L)$ $([{2^n},{2^n}M],Z){\rm{IaGC}}_{{2^n}M}^{{2^n}L}$ 组内最优 否 文献[13]方法1 ZACS序列集参数$(M,Z){\rm{ACS}}_P^N$ $(2M,Z){\rm{ACS}}_{2P}^{2N}$ 否 否 文献[13]方法2 ZACS序列集参数$(M,Z){\rm{ACS}}_{2P}^N$ $(M,2Z){\rm{ACS}}_{2P}^{2N}$ $M = 2P\left\lfloor {{N/Z}} \right\rfloor $时最优 否 文献[14] ZACS序列集参数$(T,Z){\rm{ACS}}_M^N$ $(T,Z){\rm{ACS}}_M^N$ $T = M\left\lfloor {{N/Z}} \right\rfloor $时最优 否 本文 正交矩阵${A_{{N} \times {N}}}$和正交序列集$B$, $N = LZ$, $T = KZ$ $(LT,Z){\rm{ACS}}_N^T$ 是 是 -
CHEN H H, YEH J F, and SUEHIRO N. A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications[J]. IEEE Communications Magazine, 2001, 39(10): 126–135. doi: 10.1109/35.956124 LIU Zilong, GUAN Yongliang, and PARAMPALLI U. New complete complementary codes for peak-to-mean power control in multi-carrier CDMA[J]. IEEE Transactions on Communications, 2014, 62(3): 1105–1113. doi: 10.1109/TCOMM.2013.122013.130148 VELAZQUEZ-GUTIERREZ J M and VARGAS-ROSALES C. Sequence sets in wireless communication systems: A survey[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 1225–1248. doi: 10.1109/COMST.2016.2639739 KE Pinhui and ZHOU Zhengchun. A generic construction of Z-periodic complementary Sequence sets with flexible flock size and zero correlation zone length[J]. IEEE Signal Processing Letters, 2015, 22(9): 1462–1466. doi: 10.1109/LSP.2014.2369512 CHEN Chaoyu. A novel construction of Z-complementary pairs based on generalized Boolean functions[J]. IEEE Signal Processing Letters, 2017, 24(7): 987–990. doi: 10.1109/LSP.2017.2701834 岳红翠, 高军萍, 李琦. 新的零相关区周期互补序列集的构造方法[J]. 信息与控制, 2018, 47(6): 650–655. doi: 10.13976/j.cnki.xk.2018.7441YUE Hongcui, GAO Junping, and LI Qi. New construction method for periodic complementary sequence sets with zero correlation zone[J]. Information and Control, 2018, 47(6): 650–655. doi: 10.13976/j.cnki.xk.2018.7441 刘涛, 许成谦, 李玉博. 基于差族构造高斯整数周期互补序列[J]. 电子与信息学报, 2019, 14(5): 1167–1172. doi: 10.11999/JEIT180646LIU Tao, XU Chengqian, and LI Yubo. Constructions of Gaussian integer periodic complementary sequences based on difference families[J]. Journal of Electronics &Information Technology, 2019, 14(5): 1167–1172. doi: 10.11999/JEIT180646 LI Yubo, SUN Jiaan, XU Chengqian, et al. Constructions of optimal zero correlation zone aperiodic complementary sequence sets[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, E100-A(3): 908–912. doi: 10.1587/transfun.E100.A.908 LI Yubo and XU Chengqian. ZCZ aperiodic complementary sequence sets with low column sequence PMEPR[J]. IEEE Communications Letters, 2015, 19(8): 1303–1306. doi: 10.1109/LCOMM.2015.2446473 LI Jing, HUANG Aiping, GUIZANI M, et al. Inter-group complementary codes for interference-resistant CDMA wireless communications[J]. IEEE Transactions on Wireless Communications, 2008, 7(1): 166–174. doi: 10.1109/TWC.2008.060414 SARKAR P, MAJHI S, VETTIKALLADI H, et al. A direct construction of inter-group complementary code set[J]. IEEE Access, 2018, 6: 42047–42056. doi: 10.1109/ACCESS.2018.2856878 张振宇, 曾凡鑫, 宣贵新, 等. MC-CDMA系统中具有组内互补特性的序列构造[J]. 通信学报, 2011, 32(3): 27–32, 39. doi: 10.3969/j.issn.1000-436X.2011.03.004ZHANG Zhenyu, ZENG Fanxin, XUAN Guixin, et al. Design of sequences with intra-group complementary properties for MC-CDMA systems[J]. Journal on Communications, 2011, 32(3): 27–32, 39. doi: 10.3969/j.issn.1000-436X.2011.03.004 LI Xudong, FAN Pingzhi, TANG Xiaohu, et al. Quadriphase z-complementary sequences[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2010, E93. A(11): 2251–2257. doi: 10.1587/transfun.E93.A.2251 ZENG Fanxin, ZENG Xiaoping, ZHANG Zhenyu, et al. New construction method for quaternary aperiodic, periodic, and Z-complementary sequence sets[J]. Journal of Communications and Networks, 2012, 14(13): 230–236. doi: 10.1109/JCN.2012.6253082 LIU Kai, TIAN Huandan, and LI Yubo. Aperiodic complementary sequence sets with zero correlation zone over 8-QAM+ constellation[C]. The 6th International Conference on Electronics Information and Emergency Communication, Beijing, China, 2016: 198–201. doi: 10.1109/ICEIEC.2016.7589719.
计量
- 文章访问数: 943
- HTML全文浏览量: 532
- PDF下载量: 61
- 被引次数: 0