高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有特征感知的D2D内容缓存策略

杨静 李金科

杨静, 李金科. 带有特征感知的D2D内容缓存策略[J]. 电子与信息学报, 2020, 42(9): 2201-2207. doi: 10.11999/JEIT190691
引用本文: 杨静, 李金科. 带有特征感知的D2D内容缓存策略[J]. 电子与信息学报, 2020, 42(9): 2201-2207. doi: 10.11999/JEIT190691
Jing YANG, Jinke LI. Feature-Aware D2D Content Caching Strategy[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2201-2207. doi: 10.11999/JEIT190691
Citation: Jing YANG, Jinke LI. Feature-Aware D2D Content Caching Strategy[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2201-2207. doi: 10.11999/JEIT190691

带有特征感知的D2D内容缓存策略

doi: 10.11999/JEIT190691
基金项目: 国家自然科学基金(61871062, 61771082),重庆市高校创新团队建设计划项目(CXTDX201601020)
详细信息
    作者简介:

    杨静:女,1972年生,高级工程师,研究方向为泛在无线通信网络、物联网技术等

    李金科:男,1995年生,硕士生,研究方向为D2D通信

    通讯作者:

    李金科 s170131104@stu.cqupt.edu.cn

  • 中图分类号: TN919

Feature-Aware D2D Content Caching Strategy

Funds: The National Natural Science Foundation of China (61871062, 61771082), The Program for Innovation Team Building at Institutions of Higher Education in Chongqing (CXTDX201601020)
  • 摘要: 设备到设备通信(D2D)可以有效地卸载基站流量,在D2D网络中不仅需要共享大众化内容还需要个性化内容缓存。该文对缓存内容选择问题进行了深入研究,提出一种结合特征感知的内容社交价值预测(CSVP)方法。价值预测不仅可以降低时延也可以减少缓存替换次数降低缓存成本。首先结合用户特征和内容特征计算内容当前价值,然后通过用户社交关系计算未来价值。微基站根据内容的价值为用户提供个性化内容缓存服务,宏基站则在每个微基站的缓存内容中选择价值较大部分的内容。仿真结果表明,该文提出的缓存策略可以有效缓解基站流量,与其他方法相比降低时延约20%~40%。
  • 图  1  网络架构

    图  2  用户间社交对价值的影响

    图  3  不同策略下的命中率

    图  4  不同策略下的请求时延

    图  5  不同齐夫参数下的命中率

    图  6  不同学习率下的命中率

    表  1  算法1 内容社交价值预测

     输入:$T,r,\alpha ,\lambda ,{\lambda _1},{\lambda _2},{\beta _1},{\beta _2},\xi $
     输出:价值列表,观察用户请求情况
     (1)  随机初始化参数$\widehat {{U}},\widehat {{C}},{{L}},{{W}}$
     (2)  For t=1, 2, ···, T do
     (3)   感知内容特征及用户特征
     (4)   For all kC do
     (5)    如果内容是新内容:
     (6)     初始化参数:${{{A}}_k} \leftarrow {{{I}}_d}$, ${{{B}}_k} \leftarrow {0_{d*1}}$
     (7)    结束
     (8)    更新参数:${\theta _{t,k}} \leftarrow {{A}}_{t,k}^{ - 1}{{{B}}_{t,k}}$,
          ${P_{t,i,k}} \leftarrow {{X}}_{t,k}^{\rm{T}}{\theta _k} + \alpha \sqrt {{{X}}_{t,k}^{\rm{T}}{{A}}_{t,k}^{ - 1}{{X}}_{t,k}^{\rm{T}}} $,
          ${{{A}}_{t,k}} \leftarrow {{{A}}_{t,k}} + {{{X}}_{t,k}}{{X}}_{t,k}^{\rm{T}}$, ${{{B}}_{t,k}} \leftarrow {{{B}}_{t,k}} + {r_t}{{{X}}_{t,k}}$
     (9)    当式(29)的值没有收敛时:
     (10)     根据梯度更新参数
     (11)    结束
     (12)    计算未来价值
     (13)    计算总价值
     (14)   结束
     (15)  按降序输出价值列表,观察用户请求情况
     (16) 结束
    下载: 导出CSV

    表  2  仿真参数设置

    参数参数值
    内容库数量5000
    内容包大小20 MB
    SBS-UE延时20 ms
    BS-UE延时50 ms
    CDN-UE延时100 ms
    D2D延时10 ms
    下载: 导出CSV
  • Cisco. Cisco visual networking index: Global mobile data traffic forecast update, 2017–2022 white paper[EB/OL]. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html, 2019.
    REBECCHI F, DE AMORIM M D, and CONAN V. Droid: Adapting to individual mobility pays off in mobile data offloading[C]. 2014 IFIP Networking Conference, Trondheim, Norway, 2014: 1–9. doi: 10.1109/IFIPNetworking.2014.6857087.
    FANG Chao, YAO Haipeng, WANG Zhuwei, et al. A survey of mobile information-centric networking: research issues and challenges[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2353–2371. doi: 10.1109/COMST.2018.2809670
    TATAR A, DE AMORIM M D, FDIDA S, et al. A survey on predicting the popularity of web content[J]. Journal of Internet Services and Applications, 2014, 5(1): 8. doi: 10.1186/s13174-014-0008-y
    CHANDRASEKARAN G, WANG N, and TAFAZOLLI R. Caching on the move: Towards D2D-based information centric networking for mobile content distribution[C]. The 40th IEEE Conference on Local Computer Networks, Clearwater Beach, USA, 2015: 312–320, doi: 10.1109/LCN.2015.7366325.
    KHAN F H and KHAN Z. Popularity-aware content caching for distributed wireless helper nodes[J]. Arabian Journal for Science and Engineering, 2017, 42(8): 3375–3389. doi: 10.1007/s13369-017-2505-3
    TAGHIZADEH M and BISWAS S. Community based cooperative content caching in social wireless networks[C]. The 14th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Bangalore, India, 2013: 257–262. doi: 10.1145/2491288.2491318.
    柴蓉, 王令, 陈明龙, 等. 基于时延优化的蜂窝D2D通信联合用户关联及内容部署算法[J]. 电子与信息学报, 2019, 41(11): 2565–2570. doi: 10.11999/JEIT180408

    CHAI Rong, WANG Ling, CHEN Minglong, et al. Joint clustering and content deployment algorithm for cellular d2d communication based on delay optimization[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2565–2570. doi: 10.11999/JEIT180408
    MEGIDDO N and MODHA D S. ARC: A self-tuning, low overhead replacement cache[C]. The 2nd USENIX Conference on File and Storage Technologies, San Francisco, USA, 2003: 115–130.
    MEGIDDO N and MODHA D S. Outperforming LRU with an adaptive replacement cache algorithm[J]. Computer, 2004, 37(4): 58–65. doi: 10.1109/MC.2004.1297303
    XIANG Lin, Ng D W K, GE Xiaohu, et al. Cache-aided non-orthogonal multiple access: The two-user case[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(3): 436–451. doi: 10.1109/JSTSP.2019.2907864
    LI Lihong, CHU Wei, LANGFORD J, et al. A contextual-bandit approach to personalized news article recommendation[C]. The 19th International Conference on World Wide Web, Raleigh, USA, 2010: 661–670. doi: 10.1145/1772690.1772758.
    ZIPF G K. Selected studies of the principle of relative frequency in language[J]. Language, 1933, 9(1): 89–92. doi: 10.4159/harvard.9780674434929
    JIANG Wei, FENG Gang, QIN Shuang, et al. Multi-agent reinforcement learning for efficient content caching in mobile D2D networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(3): 1610–1622. doi: 10.1109/TWC.2019.2894403
    WALSH T J, SZITA I, DIUK C, et al. Exploring compact reinforcement-learning representations with linear regression[C]. The 25th Conference on Uncertainty in Artificial Intelligence, Montreal, Canada, 2009, 591–598.
    MA Hao, ZHOU T C, LYU M R, et al. Improving recommender systems by incorporating social contextual information[J]. ACM Transactions on Information Systems, 2011, 29(2): 1–23. doi: 10.1145/1961209.1961212
    YANG Bo, LEI Yu, LIU Jiming, et al. Social collaborative filtering by trust[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1633–1647. doi: 10.1109/TPAMI.2016.2605085
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1877
  • HTML全文浏览量:  618
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-05
  • 修回日期:  2020-05-03
  • 网络出版日期:  2020-05-17
  • 刊出日期:  2020-09-27

目录

    /

    返回文章
    返回