Blind Recognition of RS Codes Based on Soft Decision
-
摘要: 针对现有RS码识别算法需要对码字符号在不同域之间进行转化,且容错性能较差的问题,该文提出一种直接利用软判决序列完成RS码识别算法。算法首先从RS码定义出发,给出了RS码校验关系从GF(2m)到GF(2)上的等价转换方式,从而避免了不同域下复杂的符号转化;其次引入了能够衡量校验关系成立大小的平均校验符合度概念,然后基于其统计特性以及极大极小判决准则,遍历可能的码长以及对应的m级本原多项式,进行初始码根校验匹配,从而完成码长以及本原多项式识别;最后利用识别出的码长以及本原多项式,构建本原多项式下GF(2m),进行连续码根匹配判决,最终完成码生成多项式识别。仿真结果表明:推导的平均校验符合度统计特性与实际情况一致,算法能在低信噪比下有效完成参数识别;同时该算法具有较好的低信噪比适应能力,在信噪比为6 dB条件下,工程中常见的RS码识别率均能达到90%以上。与现有算法相比,该文算法性能明显好于硬判决算法,且比传统算法提升1 dB以上性能。Abstract: To solve the problem that the existing algorithms for recognition of RS codes need to transform the code characters among different domains and poor performance, a new algorithm based on soft decision is proposed. Firstly, starting from the definition of RS codes, the equivalent conversion mode of the check relation of RS code from GF (2m) to GF (2) is given, which avoids the complex symbol transformation in different domains. Secondly, the average check conformity which can measure the validity of the check relationship is introduced and based on its statistical characteristics and minimax decision criteria, the possible code length and corresponding m-level primitive polynomials are traversed to match the initial code root, as the results, the code length and primitive polynomial are recognized. Finally, under the identified code length and the primitive polynomial, the GF (2m) is constructed, and the continuous code root matching decision is made, then the generation polynomial is recognized. The simulation results show that the derived statistical characteristics of the average check conformity are consistent with the actual situation, and the proposed algorithm can effectively recognize parameter under low Signal-to-Noise Ratio (SNR). At the same time, the proposed algorithm has good adaptability to low SNR. At SNR of 6 dB, the recognition rate of common RS codes in engineering can reach more than 90%. Compared with the existing methods, the performance of this algorithm is better than hard-decision algorithm, besides, it is improved by more than 1 dB compared by traditional algorithms.
-
Key words:
- RS code /
- Soft decision /
- Average check conformity /
- Minimax criterion /
- Code root matching
-
表 1 RS码编码器参数设定
m 码长 本原多项式 生成多项式 H1下测试元素 H0下测试元素 4 15 x4+x+1 ${\alpha ^3}{x^4} + {\alpha ^{11}}{x^3} + {\alpha ^{14}}{x^2} + {\alpha ^6}x + {\alpha ^8}$ ${\alpha ^2}$ ${\alpha ^5}$ 5 31 x5+x2+1 ${\alpha ^4}{x^2} + {\alpha ^{20}}x + \alpha $ $\alpha $ ${\alpha ^3}$ 6 63 x6+x+1 ${\alpha ^5}{x^4} + {\alpha ^{19}}{x^3} + {\alpha ^{36}}{x^2} + {\alpha ^{14}}x + {\alpha ^{58}}$ ${\alpha ^3}$ ${\alpha ^6}$ 表 2 不同码长的RS码编码器参数
m 码长 本原多项式 生成多项式 纠错能力 4 15 x4+x+1 ${\alpha ^3}{x^4} + {\alpha ^{11}}{x^3} + {\alpha ^{14}}{x^2} + {\alpha ^6}x + {\alpha ^8}$ 2 5 31 x5+x2+1 ${\alpha ^4}{x^4} + {\alpha ^{23}}{x^3} + {\alpha ^{13}}{x^2} + {\alpha ^{18}}x + {\alpha ^{25}}$ 2 6 63 x6+x+1 ${\alpha ^5}{x^4} + {\alpha ^{19}}{x^3} + {\alpha ^{36}}{x^2} + {\alpha ^{14}}x + {\alpha ^{58}}$ 2 7 127 x7+x+1 ${\alpha ^6}{x^4} + {\alpha ^{23}}{x^3} + {\alpha ^{69}}{x^2} + {\alpha ^{18}}x + {\alpha ^{123}}$ 2 8 255 x8+x4+x3+x2+1 ${\alpha ^7}{x^4} + {\alpha ^{78}}{x^3} + {\alpha ^{248}}{x^2} + {\alpha ^{73}}x + {\alpha ^{252}}$ 2 -
解辉, 黄知涛, 王丰华. 信道编码盲识别技术研究进展[J]. 电子学报, 2013, 41(6): 1166–1176. doi: 10.3969/j.issn.0372-2112.2013.06.019XIE Hui, HUANG Zhitao, and WANG Fenghua. Research progress of blind recognition of channel coding[J]. Acta Electronica Sinica, 2013, 41(6): 1166–1176. doi: 10.3969/j.issn.0372-2112.2013.06.019 HUANG Li, CHEN Wengu, CHEN Enhong, et al. Blind recognition of k/n rate convolutional encoders from noisy observation[J]. Journal of Systems Engineering and Electronics, 2017, 28(2): 235–243. doi: 10.21629/JSEE.2017.02.04 于沛东, 彭华, 巩克现, 等. 基于最小二乘代价函数的卷积码盲识别方法[J]. 电子学报, 2018, 46(7): 1545–1552. doi: 10.3969/j.issn.0372-2112.2018.07.002YU Peidong, PENG Hua, GONG Kexian, et al. Blind recognition of convolutional codes based on least-Square cost-function[J]. Acta Electronica Sinica, 2018, 46(7): 1545–1552. doi: 10.3969/j.issn.0372-2112.2018.07.002 戚林, 郝士琦, 李今山. 基于有限域欧几里德算法的RS码识别[J]. 探测与控制学报, 2011, 33(2): 63–67. doi: 10.3969/j.issn.1008-1194.2011.02.015QI Lin, HAO Shiqi, and LI Jinshan. Recognition method of RS codes based on euclidean algorithm in Galois field[J]. Journal of Detection &Control, 2011, 33(2): 63–67. doi: 10.3969/j.issn.1008-1194.2011.02.015 李灿, 张天骐, 刘瑜. 基于伽罗华域高斯列消元法的RS码盲识别[J]. 电讯技术, 2014, 54(7): 926–931.LI Can, ZHANG Tianqi, and LIU Yu. Blind recognition of RS codes based on Galois field columns Gaussian elimination[J]. Telecommunication Engineering, 2014, 54(7): 926–931. 包昕, 陆佩忠, 游凌. 基于伽罗华域傅里叶变换的RS码识别方法[J]. 电子科技大学学报, 2016, 45(1): 30–35. doi: 10.3969/j.issn.1001-0548.2016.01.004BAO Xin, LU Peizhong, and YOU Ling. Recognition of RS coding based on Galois field Fourier transform[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(1): 30–35. doi: 10.3969/j.issn.1001-0548.2016.01.004 张立民, 刘杰, 孙永威, 等. RS码编码参数的盲识别[J]. 电讯技术, 2017, 57(6): 650–655. doi: 10.3969/j.issn.1001-893x.2017.06.006ZHANG Limin, LIU Jie, SUN Yongwei, et al. Blind parameter recognition of RS codes[J]. Telecommunication Engineering, 2017, 57(6): 650–655. doi: 10.3969/j.issn.1001-893x.2017.06.006 甘露, 周攀. 基于中国剩余定理分解的RS码快速盲识别算法[J]. 电子与信息学报, 2012, 34(12): 2837–2842. doi: 10.3724/SP.J.1146.2012.00434GAN Lu and ZHOU Pan. Fast blind recognition method of RS codes based on Chinese remainder theorem decomposition[J]. Journal of Electronics &Information Technology, 2012, 34(12): 2837–2842. doi: 10.3724/SP.J.1146.2012.00434 LI Tong, MIAO Chenglin, and LÜ Jun. An improved algorithm of RS codes blind recognition[J]. Applied Mechanics and Materials, 2014, 603-605: 2308–2312. 杨烁. CPM信号非相干解调与RS码盲识别技术研究[D]. [硕士论文], 哈尔滨工程大学, 2018: 23–54.YANG Shuo. Research on non-coherent demodulation of continuous phase modulation signal and Reed-Solomon code blind recognition[D]. [Master dissertation], Harbin Engineering University, 2018: 23–54. LIU Pengtao, PAN Zhipeng, and LEI Jing. Parameter identification of Reed-Solomon codes based on probability statistics and Galois field Fourier transform[J]. IEEE Access, 2019, 7: 33619–33630. doi: 10.1109/ACCESS.2019.2904718 LU Ouxin, GAN Lu, and LIAO Hongshu. Blind reconstruction of RS codes[J]. Asian Journal of Applied Sciences, 2015, 8(1): 37–45. doi: 10.3923/ajaps.2015.37.45 王平, 曾伟涛, 陈健, 等. 一种利用本原元的快速RS码盲识别算法[J]. 西安电子科技大学学报: 自然科学版, 2013, 40(1): 105–110, 168.WANG Ping, ZENG Weitao, CHEN Jian, et al. Fast blind recognition algorithm for RS codes by primitive element[J]. Journal of Xidian University:Natural Science, 2013, 40(1): 105–110, 168. 刘杰, 张立民, 钟兆根. 基于二元域等效的RS码编码参数盲识别[J]. 电子学报, 2018, 46(12): 2888–2895. doi: 10.3969/j.issn.0372-2112.2018.12.010LIU Jie, ZHANG Limin, and ZHONG Zhaogen. Blind parameter identification of RS code based on binary field equivalence[J]. Acta Electronica Sinica, 2018, 46(12): 2888–2895. doi: 10.3969/j.issn.0372-2112.2018.12.010 王新梅, 肖国镇. 纠错码-原理与方法[M]. 西安: 西安电子科技大学出版社, 2001: 145–240.WANG Xinmei and XIAO Guozhen. Error Correcting Code Theory and Method[M]. Xi’an: Xidian University Press, 2001: 145–240. 张立民, 吴昭军, 钟兆根. 基于校验方程符合度下的Turbo码编码器盲识别[J]. 电子与信息学报, 2017, 39(9): 2155–2161. doi: 10.11999/JEIT161391ZHANG Limin, WU Zhaojun, and ZHONG Zhaogen. Blind recognition of turbo code encoder based on conformity of parity-check equation[J]. Journal of Electronics &Information Technology, 2017, 39(9): 2155–2161. doi: 10.11999/JEIT161391 陈泽亮, 李静, 彭华, 等. 利用Gibbs采样进行优化的Turbo码交织器识别[J]. 电子学报, 2018, 46(1): 15–23. doi: 10.3969/j.issn.0372-2112.2018.01.003CHEN Zeliang, LI Jing, PENG Hua, et al. An optimization method using Gibbs sampler for turbo-code Interleaver identification[J]. Acta Electronica Sinica, 2018, 46(1): 15–23. doi: 10.3969/j.issn.0372-2112.2018.01.003