高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向探地雷达 B-scan图像的目标检测算法综述

侯斐斐 施荣华 雷文太 董健 许孟迪 席景春

侯斐斐, 施荣华, 雷文太, 董健, 许孟迪, 席景春. 面向探地雷达 B-scan图像的目标检测算法综述[J]. 电子与信息学报, 2020, 42(1): 191-200. doi: 10.11999/JEIT190680
引用本文: 侯斐斐, 施荣华, 雷文太, 董健, 许孟迪, 席景春. 面向探地雷达 B-scan图像的目标检测算法综述[J]. 电子与信息学报, 2020, 42(1): 191-200. doi: 10.11999/JEIT190680
Feifei HOU, Ronghua SHI, Wentai LEI, Jian DONG, Mengdi XU, Jingchun XI. A Review of Target Detection Algorithm for GPR B-scan Processing[J]. Journal of Electronics & Information Technology, 2020, 42(1): 191-200. doi: 10.11999/JEIT190680
Citation: Feifei HOU, Ronghua SHI, Wentai LEI, Jian DONG, Mengdi XU, Jingchun XI. A Review of Target Detection Algorithm for GPR B-scan Processing[J]. Journal of Electronics & Information Technology, 2020, 42(1): 191-200. doi: 10.11999/JEIT190680

面向探地雷达 B-scan图像的目标检测算法综述

doi: 10.11999/JEIT190680
基金项目: 国家自然科学基金(61102139, 61872390),中南大学基础研究基金(2018zzts181)
详细信息
    作者简介:

    侯斐斐:女,1993年生,博士生,研究方向为探地雷达,深度学习,图像处理

    施荣华:男,1963年生,教授,博士生导师,研究方向为射频系统集成和量子技术

    雷文太:男,1979年生,副教授,博士生导师,研究方向为探地雷达系统集成和信号处理

    通讯作者:

    雷文太 leiwentai@csu.edu.cn

  • 中图分类号: TN957.51

A Review of Target Detection Algorithm for GPR B-scan Processing

Funds: The National Natural Science Foundation of China (61102139, 61872390), The Fundamental Rresearch Funds for the Central Universities of Central South University (2018zzts181)
  • 摘要:

    利用无损探测技术来获取地下目标的信息是当前研究的热点,探地雷达(GPR)作为一种重要的无损工具,已被广泛用于检测,定位和特征化地下目标。然而,从GPR成像中探测掩埋物体并评估其位置既费时又费力。因此,实现地下目标的自动化探测对实际应用是必要的。为此,该文在综合分析地下目标回波特征的基础上,讨论了使用GPR评估目标位置的可行性,并回顾了国内外学者在GPR成像中对双曲线特征自动化检测的研究进展。该文还在国内外典型实例剖析的基础上,总结并比较了目标检测的处理方法。最后指出,未来的研究应集中于开发新的深度学习检测框架,用以自动检测和估计真实场景中的地下特征。

  • 图  1  真实场景中GPR B-scan中的双曲线特征

    图  2  在文献[28]中解决的一些复杂情况示例

    图  3  DCSE和OSCA算法的对比结果展示

    图  4  基于CTFP算法的双曲线拟合结果展示

    表  1  GPR目标检测的经典算法总结

    序号参考文献时间GPR目标客观评价
    1Borgioli et al. [17]2008地埋管道在Hough变换中引入加权因子,解决了管道靠近时双曲线重叠的问题;但是需要预备模型,计算成本相对较高。
    2Maas et al. [23]2013双曲线反射使用Viola-Jones算法标记目标候选区域,它避免了模板匹配并缩小了后续搜索区域;然而,应用特征需手动识别,分类结果取决于特征的质量,难度随着数据量的增加。
    3Besaw et al. [2]2016地埋爆炸物应用CNN从GPR B-scan中提取有意义的特征并对目标进行分类。交叉验证,网络权重正则化和“dropout”用于防止过度训练。
    4Besaw[3]2016地埋爆炸物在CNN基础上增加了额外的Data Augmentation技术,用于增加可用训练数据的数量和可变性。
    5文献[4,5]2017地埋爆炸物研究了预训练CNN的初始化步骤,以解决GPR数据标记样本不足的问题;但是输入网络中真实图像的大小和数量通常是有限的,仅实现分类步骤。
    6Pham et al. [27]2018双曲线反射首次采用Faster RCNN来检测GPR B-scan中的反射双曲线。该技术在真实测试集上的性能要超过使用HOG或Haar-like特征的检测器,但缺少定量的评估。
    7Lei et al. [28]2019地埋钢筋在文献[27]基础上,采用了DA手段增加真实GPR数据集和仿真数据集;提出DCSE算法以识别双曲线特征,完善了文献[30]中提出的OSCA算法;提出CTFP算法自动提取拟合点。所提出方案的有效性在仿真和真实数据集上得到了验证。
    8Dou et al. [29]2016双曲线反射提出了C3算法分割交叉双曲线,并将其送入神经网络进行分类。C3算法水平扫描B-scan图像中的每个像素以进行聚类。然而,双曲线是垂直向下打开的,C3算法没有考虑这个重要特征。
    9Zhou et al. [30]2018金属管道
    水泥管道
    提出OSCA算法解决了文献[29]中的难题,可以识别具有向下开口特征的聚类。然而,在整个图像上进行OSCA算法是不合适的,因为难以处理包含太多非平稳噪声的大型现场数据集,导致后续处理复杂化。
    下载: 导出CSV
  • JOL H M. 雷文太, 童孝忠, 周旸, 译. 探地雷达理论与应用[M]. 北京: 电子工业出版社, 2011.

    JOL H M. LEI Wentai, TONG Xiaozhong, ZHOU Yang, translation. Ground Penetrating Radar: Theory and Applications[M]. Beijing: Publishing House of Electronics Industry, 2011.
    BESAW L E and STIMAC P J. Deep convolutional neural networks for classifying GPR B-Scans[J]. SPIE, 2015, 9454: 945413.
    BESAW L E. Detecting buried explosive hazards with handheld GPR and deep learning[J]. SPIE, 2016, 9823: 98230N. doi: 10.1117/12.2223797
    BRALICH J, REICHMAN D, COLLINS L M, et al. Improving convolutional neural networks for buried target detection in ground penetrating radar using transfer learning via pretraining[J]. SPIE, 2017: 10182.
    REICHMAN D, COLLINS L M, and MALOF J M. Some good practices for applying convolutional neural networks to buried threat detection in Ground Penetrating Radar[C]. The 9th International Workshop on Advanced Ground Penetrating Radar, Edinburgh, UK, 2017: 1–5.
    LAMERI S, LOMBARDI F, BESTAGINI P, et al. Landmine detection from GPR data using convolutional neural networks[C]. The 25th European Signal Processing Conference, Kos, Greece, 2017: 508–512.
    BENEDETTO A, BENEDETTO F, DE BLASⅡS M R, et al. Reliability of radar inspection for detection of pavement damage[J]. Road Materials and Pavement Design, 2004, 5(1): 93–110. doi: 10.1080/14680629.2004.9689964
    LEI Wentai, SHI Ronghua, DONG Jian, et al. A multi-scale weighted back projection imaging technique for ground penetrating radar applications[J]. Remote Sensing, 2014, 6(6): 5151–5163. doi: 10.3390/rs6065151
    LEI Wentai, ZENG Sheng, ZHAO Jian, et al. An improved back projection imaging algorithm for subsurface target detection[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2013, 21(6): 1820–1826.
    BENEDETTO F and TOSTI F. GPR spectral analysis for clay content evaluation by the frequency shift method[J]. Journal of Applied Geophysics, 2013, 97: 89–96. doi: 10.1016/j.jappgeo.2013.03.012
    KAUR P, DANA K J, ROMERO F A, et al. Automated GPR rebar analysis for robotic bridge deck evaluation[J]. IEEE Transactions on Cybernetics, 2016, 46(10): 2265–2276. doi: 10.1109/TCYB.2015.2474747
    DINH K, GUCUNSKI N, and DUONG T H. An algorithm for automatic localization and detection of rebars from GPR data of concrete bridge decks[J]. Automation in Construction, 2018, 89: 292–298. doi: 10.1016/j.autcon.2018.02.017
    YUAN Chenxi, LI Shuai, CAI Hubo, et al. GPR signature detection and decomposition for mapping buried utilities with complex spatial configuration[J]. Journal of Computing in Civil Engineering, 2018, 32(4): 04018026. doi: 10.1061/(ASCE)CP.1943-5487.0000764
    LI Shuai, CAI Hubo, and KAMAT V R. Uncertainty-aware geospatial system for mapping and visualizing underground utilities[J]. Automation in Construction, 2015, 53: 105–119. doi: 10.1016/j.autcon.2015.03.011
    LI Shuai, CAI Hubo, ABRAHAM D M, et al. Estimating features of underground utilities: Hybrid GPR/GPS approach[J]. Journal of Computing in Civil Engineering, 2016, 30(1): 04014108. doi: 10.1061/(ASCE)CP.1943-5487.0000443
    ILLINGWORTH J and KITTLER J. A survey of the Hough transform[J]. Computer Vision, Graphics, and Image Processing, 1988, 43(2): 280.
    BORGIOLI G, CAPINERI L, FALORNI P, et al. The detection of buried pipes from time-of-flight radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(8): 2254–2266. doi: 10.1109/tgrs.2008.917211
    WINDSOR C G, CAPINERI L, and FALORNI P. A data pair-labeled generalized Hough transform for radar location of buried objects[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 124–127. doi: 10.1109/LGRS.2013.2248119
    BOOKSTEIN F L. Fitting conic sections to scattered data[J]. Computer Graphics and Image Processing, 1979, 9(1): 56–71. doi: 10.1016/0146-664x(79)90082-0
    AKIMA H. A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points[J]. ACM Transactions on Mathematical Software, 1978, 4(2): 148–159. doi: 10.1145/355780.355786
    PORRILL J. Fitting ellipses and predicting confidence envelopes using a bias corrected Kalman filter[J]. Image and Vision Computing, 1990, 8(1): 37–41. doi: 10.1016/0262-8856(90)90054-9
    YOUN H S and CHEN C C. Automatic GPR target detection and clutter reduction using neural network[J]. SPIE, 2002, 4758: 579–582. doi: 10.1117/12.462229.
    MAAS C and SCHMALZL J. Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar[J]. Computers & Geosciences, 2013, 58: 116–125. doi: 10.1016/j.cageo.2013.04.012
    VIOLA P and JONES M J. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57(2): 137–154. doi: 10.1023/b:visi.0000013087.49260.fb
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386
    WITTEN T R. Present state of the art in ground-penetrating radars for mine detection[J]. SPIE, 1998, 3392.
    PHAM M T and LEFÈVRE S. Buried object detection from B-scan ground penetrating radar data using Faster-RCNN[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 6804–6807.
    LEI Wentai, HOU Feifei, XI Jingchun, et al. Automatic hyperbola detection and fitting in GPR B-scan image[J]. Automation in Construction, 2019, 106: 102839. doi: 10.1016/j.autcon.2019.102839
    DOU Qingxu, WEI Lijun, MAGEE D R, et al. Real-time hyperbola recognition and fitting in GPR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 51–62. doi: 10.1109/tgrs.2016.2592679
    ZHOU Xiren, CHEN Huanhuan, and LI Jinlong. An automatic GPR B-Scan image interpreting model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3398–3412. doi: 10.1109/TGRS.2018.2799586
    TANOLI W A, SHARAFAT A, and PARK J, et al. Damage Prevention for underground utilities using machine guidance[J]. Automation in Construction, 2017, 107: 102893.
    YALÇINER C C, BANO M, KADIOGLU M, et al. New temple discovery at the archaeological site of Nysa (western Turkey) using GPR method[J]. Journal of Archaeological Science, 2009, 36(8): 1680–1689. doi: 10.1016/j.jas.2008.12.016
    CAPINERI L, GRANDE P, and TEMPLE J A G. Advanced image-processing technique for real-time interpretation of ground-penetrating radar images[J]. International Journal of Imaging Systems and Technology, 1998, 9(1): 51–59. doi: 10.1002/(SICI)1098-1098(1998)9:1<51::AID-IMA7>3.0.CO;2-Q
    PASOLLI E, MELGANI F, DONELLI M, et al. Automatic detection and classification of buried objects in GPR images using genetic algorithms and support vector machines[C]. 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008: Ⅱ-525–Ⅱ-528.
    PASOLLI E, MELGANI F, and DONELLI M. Automatic analysis of GPR images: A pattern-recognition approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 2206–2217. doi: 10.1109/TGRS.2009.2012701
    MOLYNEAUX T C K, MILLARD S G, BUNGEY J H, et al. Radar assessment of structural concrete using neural networks[J]. NDT & E International, 1995, 28(5): 281–288.
    AL-NUAIMY W, HUANG Y, NAKHKASH M, et al. Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition[J]. Journal of Applied Geophysics, 2000, 43(2/4): 157–165.
    GAMBA P and LOSSANI S. Neural detection of pipe signatures in ground penetrating radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 790–797. doi: 10.1109/36.842008
    AL-NUAIMY W, HUANG Y, NAKHKASH M, et al. Neural network for the automatic detection of buried utilities and landmines[C]. 1998 Progress of Electromagnetic Research Symposium, Nantes, Frances, 1998: 141.
    SHIHAB S, AL-NUAIMY W, HUANG Y, et al. Automatic region-based shape discrimination of ground penetrating radar signatures[C]. 2003 Symposium on the Application of Geophysics to Environmental and Engineering Problems SAGEEP 2003, San Antonio, USA, 2003.
    AL-NUAIMY W, LU Huihai, SHIHAB S, et al. Automatic mapping of linear structures in 3-dimensional space from ground-penetrating radar data[C]. 2001 IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, Rome, Italy, 2001: 198–201.
    SHIHAB S, AL-NUAIMY W, and ERIKSEN A. Image processing and neural network techniques for automatic detection and interpretation of ground penetrating radar data[C]. The 6th WSEAS, Crete, 2002.
    AL-NUAIMY W, HUANG Yi, ERIKSEN A, et al. Automatic detection of hyperbolic signatures in ground-penetrating radar data[J]. SPIE, 2001, 4491: 327.
    SHAW M R, MOLYNEAUX T C K, MILLARD S G, et al. Assessing bar size of steel reinforcement in concrete using ground penetrating radar and neural networks[J]. Insight - Non-Destructive Testing and Condition Monitoring, 2003, 45(12): 813–816. doi: 10.1784/insi.45.12.813.52980
    SHAW M R, MILLARD S G, MOLYNEAUX T C K, et al. Location of steel reinforcement in concrete using ground penetrating radar and neural networks[J]. NDT & E International, 2005, 38(3): 203–212.
    LAMERI S, LOMBARDI F, BESTAGINI P, et al. Landmine detection from GPR data using convolutional neural networks[C]. The 25th European Signal Processing Conference, Kos, Greece, 2017.
    BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends® in Machine Learning, 2009, 2(1): 1–127. doi: 10.1561/2200000006
    REICHMAN D, COLLINS L M, and MALOF J M. Some good practices for applying convolutional neural networks to buried threat detection in Ground Penetrating Radar[C]. The 9th International Workshop on Advanced Ground Penetrating Radar, Edinburgh, UK, 2017.
    WARREN C, GIANNOPOULOS A, and GIANNAKIS I. GprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar[J]. Computer Physics Communications, 2016, 209: 163–170. doi: 10.1016/j.cpc.2016.08.020
    KRIZHEVSKY A. Learning multiple layers of features from tiny images[R]. Technical Report TR-2009, 2009: 1–60.
    KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient k-means clustering algorithm: Analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881–892. doi: 10.1109/TPAMI.2002.1017616
    NG R T and HAN Jiawei. Efficient and effective clustering methods for spatial data mining[C]. The 20th International Conference on Very Large Data Bases, Birmingham, USA, 1994: 144–155.
    ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[C]. The 2nd International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, 1996: 226–231.
    ERTÖZ L, STEINBACH M, and KUMAR V. Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data[C]. The 2nd SIAM International Conference on Data Mining, 2003.
    AHN S J, RAUH W, and WARNECKE H J. Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola[J]. Pattern Recognition, 2001, 34(12): 2283–2303. doi: 10.1016/S0031-3203(00)00152-7
    FITZGIBBON A, PILU M, and FISHER R B. Direct least square fitting of ellipses[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5): 476–480. doi: 10.1109/34.765658
    GANDER W, GOLUB G H, and STREBEL R. Least-squares fitting of circles and ellipses[J]. BIT Numerical Mathematics, 1994, 34(4): 558–578. doi: 10.1007/BF01934268
    PILU M, FITZGIBBON A W, and FISHER R B. Ellipse-specific direct least-square fitting[C]. The 3rd IEEE International Conference on Image Processing, Lausanne, Switzerland, 1996: 599–602.
    CHEN Huanhuan and COHN A G. Probabilistic conic mixture model and its applications to mining spatial ground penetrating radar data[C]. The Workshops in SIAM Conference on Data Mining, 2010: 1–9.
    CHEN Huanhuan and COHN A G. Probabilistic robust hyperbola mixture model for interpreting ground penetrating radar data[C]. 2010 International Joint Conference on Neural Networks, Barcelona, Spain, 2010: 1–8.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  5112
  • HTML全文浏览量:  2111
  • PDF下载量:  502
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-04
  • 修回日期:  2019-11-12
  • 网络出版日期:  2019-11-18
  • 刊出日期:  2020-01-21

目录

    /

    返回文章
    返回