高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相干态光场的连续变量测量设备无关Cluster态量子通信

王宇 苏琦

王宇, 苏琦. 基于相干态光场的连续变量测量设备无关Cluster态量子通信[J]. 电子与信息学报, 2020, 42(2): 307-314. doi: 10.11999/JEIT190661
引用本文: 王宇, 苏琦. 基于相干态光场的连续变量测量设备无关Cluster态量子通信[J]. 电子与信息学报, 2020, 42(2): 307-314. doi: 10.11999/JEIT190661
Yu WANG, Qi SU. Continuous Variable Measurement-Device-Independent Cluster State Quantum Communication Based on Coherent State[J]. Journal of Electronics & Information Technology, 2020, 42(2): 307-314. doi: 10.11999/JEIT190661
Citation: Yu WANG, Qi SU. Continuous Variable Measurement-Device-Independent Cluster State Quantum Communication Based on Coherent State[J]. Journal of Electronics & Information Technology, 2020, 42(2): 307-314. doi: 10.11999/JEIT190661

基于相干态光场的连续变量测量设备无关Cluster态量子通信

doi: 10.11999/JEIT190661
基金项目: 国家自然科学基金(61602045, 61602046),国家重点研发计划(2016YFA0302600, 2018YFA0306404)
详细信息
    作者简介:

    王宇:男,1982年生,副研究员,研究方向为量子密码和量子计算

    苏琦:男,1985年生,助理研究员,研究方向为量子随机数和量子协议

    通讯作者:

    王宇 wangy@sklc.org

  • 中图分类号: TN918

Continuous Variable Measurement-Device-Independent Cluster State Quantum Communication Based on Coherent State

Funds: The National Natural Science Foundation of China (61602045, 61602046), The National Key Research and Development Program of China (2016YFA0302600, 2018YFA0306404)
  • 摘要: 由于量子通信协议理论上可以发现任何窃听者的攻击行为,因此其天然具有抗量子计算机攻击的能力。高斯相干态光场相较于纠缠态光场更容易制备和实现,利用其实现量子通信网络更具经济价值和实用价值。该文提出一种利用连续变量(CV)相干态光场就可以实现的测量设备无关(MDI)Cluster态量子通信网络协议。在此网络上可以方便地执行量子秘密共享(QSS)协议和量子会议(QC)协议。该文提出了线型Cluster态实现任意部分用户间QSS协议、星型Cluster态四用户QSS协议和QC协议,并利用纠缠模型分析了选用对称和非对称网络结构时,每种协议密钥率和传输距离之间的变化关系。结论为在量子网络中利用相干态实现QSS和QC协议提供了理论依据。
  • 图  1  测量设备无关网络架构

    图  2  4用户相干态测量设备无关量子通信网络

    图  3  Eve的输出模式和攻击方案

    图  4  4用户参与QSS协议安全密钥率和传输距离的关系

    图  5  3用户参与QSS协议安全密钥率和传输距离的关系

    图  6  QC协议安全密钥率和传输距离的关系

  • BRAUNSTEIN S L and VAN LOOCK P. Quantum information with continuous variables[J]. Reviews of Modern Physics, 2005, 77(2): 513–577. doi: 10.1103/RevModPhys.77.513
    ZHANG Jing and BRAUNSTEIN S L. Continuous-variable Gaussian analog of cluster states[J]. Physical Review A, 2006, 73(3): 032318. doi: 10.1103/PhysRevA.73.032318
    YOKOYAMA S, UKAI R, ARMSTRONG S C, et al. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain[J]. Nature Photonics, 2013, 7(12): 982–986. doi: 10.1038/nphoton.2013.287
    BRIEGEL H J and RAUSSENDORF R. Persistent entanglement in arrays of interacting particles[J]. Physical Review Letters, 2001, 86(5): 910–913. doi: 10.1103/PhysRevLett.86.910
    WANG Yu and SU Qi. Implementing classical Hadamard transform algorithm by continuous variable cluster state[J]. Chinese Physics Letters, 2017, 34(7): 070302. doi: 10.1088/0256-307X/34/7/070302
    CLEVE R, GOTTESMAN D, and LO H K. How to share a quantum secret[J]. Physical Review Letters, 1999, 83(3): 648–651. doi: 10.1103/PhysRevLett.83.648
    ZHAO Yi, FUNG C H F, Qi Bing, et al. Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems[J]. Physical Review A, 2008, 78(4): 042333. doi: 10.1103/PhysRevA.78.042333
    YIN Hualei, CHEN Tengyun, YU Zongwen, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber[J]. Physical Review Letters, 2016, 117(19): 190501. doi: 10.1103/PhysRevLett.117.190501
    LUCAMARINI M, YUAN Z L, DYNES J F, et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters[J]. Nature, 2018, 557(7705): 400–403. doi: 10.1038/s41586-018-0066-6
    WANG Shuang, HE Deyong, YIN Zhenqiang, et al. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system[J]. Physical Review X, 2019, 9(2): 021046. doi: 10.1103/PhysRevX.9.021046
    WU Yadong, ZHOU Jian, GONG Xinbao, et al. Continuous-variable measurement-device-independent multipartite quantum communication[J]. Physical Review A, 2016, 93(2): 022325. doi: 10.1103/PhysRevA.93.022325
    OTTAVIANI C, LUPO C, LAURENZA R, et al. High-rate secure quantum conferencing[J]. ArXiv: 1709.06988, 2017.
    WANG Yu, TIAN Caixing, SU Qi, et al. Measurement-device-independent quantum secret sharing and quantum conference based on Gaussian cluster state[J]. Science China Information Sciences, 2019, 62(7): 72501. doi: 10.1007/s11432-018-9705-x
    MENICUCCI N C, VAN LOOCK P, GU M, et al. Universal quantum computation with continuous-variable cluster states[J]. Physical Review Letters, 2006, 97(11): 110501. doi: 10.1103/PhysRevLett.97.110501
    YUKAWA M, UKAI R, VAN LOOCK P, et al. Experimental generation of four-mode continuous-variable cluster states[J]. Physical Review A, 2008, 78(1): 012301. doi: 10.1103/PhysRevA.78.012301
    BEIMEL A. Secret-sharing schemes: A survey[C]. The 3rd International Conference on Coding and Cryptology (IWCC’11), Qingdao, China, 2011: 11–46.
    ADESSO G and ILLUMINATI F. Entanglement in continuous-variable systems: Recent advances and current perspectives[J]. Journal of Physics A: Mathematical and Theoretical, 2007, 40(28): 7821–7880. doi: 10.1088/1751-8113/40/28/S01
  • 加载中
图(6)
计量
  • 文章访问数:  2587
  • HTML全文浏览量:  667
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-30
  • 修回日期:  2019-12-06
  • 网络出版日期:  2019-12-20
  • 刊出日期:  2020-02-19

目录

    /

    返回文章
    返回