高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度神经网络的Morse码自动译码算法

游凌 李伟浩 张文林 王科人

游凌, 李伟浩, 张文林, 王科人. 基于深度神经网络的Morse码自动译码算法[J]. 电子与信息学报, 2020, 42(11): 2643-2648. doi: 10.11999/JEIT190658
引用本文: 游凌, 李伟浩, 张文林, 王科人. 基于深度神经网络的Morse码自动译码算法[J]. 电子与信息学报, 2020, 42(11): 2643-2648. doi: 10.11999/JEIT190658
Ling YOU, Weihao LI, Wenlin ZHANG, Keren WANG. Automatic Decoding Algorithm of Morse Code Based on Deep Neural Network[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2643-2648. doi: 10.11999/JEIT190658
Citation: Ling YOU, Weihao LI, Wenlin ZHANG, Keren WANG. Automatic Decoding Algorithm of Morse Code Based on Deep Neural Network[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2643-2648. doi: 10.11999/JEIT190658

基于深度神经网络的Morse码自动译码算法

doi: 10.11999/JEIT190658
基金项目: 国家自然科学基金(61403415),中国博士后科学基金(2016M602975)
详细信息
    作者简介:

    游凌:男,1971年生,博士,研究员,研究方向为信号分析

    李伟浩:男,1996年生,硕士生,研究方向为深度学习、信号分析

    张文林:男,1982年生,博士,副教授,研究方向为语音信号处理、语音识别、自然语言理解

    王科人:男,1986年生,博士,助理研究员,研究方向为信号分析、智能信息处理

    通讯作者:

    李伟浩 liweihao315@gmail.com

  • 中图分类号: TN919.32

Automatic Decoding Algorithm of Morse Code Based on Deep Neural Network

Funds: The National Natural Science Foundation of China (61403415), The Postdoctoral Science Foundation of China(2016M602975)
  • 摘要: 在军用和民用领域,Morse电报一直是一种重要的短波通信手段,但目前的自动译码算法仍然存在准确率低、无法适应低信噪比和不稳定的信号等问题。该文引入深度学习方法构建了一个Morse码自动识别系统,神经网络模型由卷积神经网络、双向长短时记忆网络和连接时序分类层组成,结构简单,且能够实现端到端的训练。相关实验表明,该译码系统在不同信噪比、不同码速、信号出现频率漂移以及不同发报手法引起的码长偏差等情况下,均能取得较好的识别效果,性能优于传统的自动识别算法。
  • 图  1  Morse信号时频图

    图  2  神经网络结构

    图  3  特征序列与时频图的对应

    图  4  多模型识别准确率对比

    图  5  多模型识别速度对比

    图  6  出现频率漂移和码长偏差的Morse信号

    表  1  CNN层设置

    层名称对应核大小
    卷积层1(5, 5, 1, 32),步长=(1, 1)
    最大池化层1(2, 2),步长=(2, 2)
    卷积层2(5, 5, 32, 64),步长=(1, 1)
    最大池化层2(2, 16),步长=(2, 2)
    下载: 导出CSV

    表  2  数据集组成

    码速(wpm)信噪比(dB)数目
    训练集25, 30, 4040, 30, 20, 10, 6, 3, –3, –6, –8, –1025000/50000
    验证集25, 30, 4040, 30, 20, 10, 6, 3, –3, –6, –8, –102500
    测试集25, 30, 4040, 30, 20, 10, 6, 3, –3, –6, –8, –102500
    下载: 导出CSV

    表  3  频率漂移和码长偏差情况下的译码准确率

    字准确率(%)词准确率(%)
    原始信号99.9299.65
    频率漂移96.2391.71
    频率漂移+码长偏差95.8890.40
    下载: 导出CSV

    表  4  有无频漂时去掉CNN前后译码性能

    迭代次数字准确率(%)词准确率(%)
    有CNN,无频漂2399.9299.65
    无CNN,无频漂4292.7173.90
    有CNN,有频漂2696.2391.71
    无CNN,有频漂4763.1120.35
    下载: 导出CSV
  • DEY S, CHUGG K M, and BEEREL P A. Morse code datasets for machine learning[C]. The 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Bangalore, India, 2018: 1–7. doi: 10.1109/icccnt.2018.8494011.
    SHIH C H and LUO C H. A Morse-code recognition system with LMS and matching algorithms for persons with disabilities[J]. International Journal of Medical Informatics, 1997, 44(3): 193–202. doi: 10.1016/s1386-5056(97)00020-8
    HSIEH M C, LUO C H, and MAO Chiwu. Unstable Morse code recognition with adaptive variable-ratio threshold prediction for physically disabled persons[J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(3): 405–413. doi: 10.1109/86.867882
    YANG Chenghong, LUO C H, JEANG Y L, et al. A novel approach to adaptive Morse code recognition for disabled persons[J]. Mathematics and Computers in Simulation, 2000, 54(1/3): 23–32. doi: 10.1016/s0378-4754(00)00180-4
    GOLD B. Machine recognition of hand-sent Morse code[J]. IRE Transactions on Information Theory, 1959, 5(1): 17–24. doi: 10.1109/TIT.1959.1057478
    WU Chungmin and LUO Chinghsing. Morse code recognition system with fuzzy algorithm for disabled persons[J]. Journal of Medical Engineering & Technology, 2002, 26(5): 202–207. doi: 10.1080/03091900210156904
    WANG Yaqi, SUN Zhonghua, and JIA Kebin. An automatic decoding method for Morse signal based on clustering algorithm[C]. The 12th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kaohsiung, China, 2017: 235–242.
    王亚琦, 孙中华, 贾克斌. Morse报自动译码算法研究[J]. 信号处理, 2017, 33(11): 1451–1456.

    WANG Yaqi, SUN Zhonghua, and JIA Kebin. Research on automatic decoding algorithm of Morse telegraph[J]. Signal Processing, 2017, 33(11): 1451–1456.
    LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    WANG Xianyu, ZHAO Qi, MA Cheng, et al. Automatic Morse code recognition under low SNR[C]. 2018 International Conference on Mechanical, Electronic, Control and Automation Engineering (MECAE 2018), Qingdao, China, 2018: 46–51. doi: 10.2991/mecae-18.2018.46.
    SHI Baoguang, BAI Xiang, and YAO Cong. An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(11): 2298–2304. doi: 10.1109/TPAMI.2016.2646371
    韦醒超. 摩尔斯短波无线通信系统的设计与实现研究[D]. [硕士论文], 湖南大学, 2017.

    WEI Xingchao. Research on the design and implementation of Morse shortwave wireless communication system[D]. [Master dissertation], Hunan University, 2017.
    CABAL-YEPEZ E, GARCIA-RAMIREZ A G, ROMERO-TRONCOSO R J, et al. Reconfigurable monitoring system for time-frequency analysis on industrial equipment through STFT and DWT[J]. IEEE Transactions on Industrial Informatics, 2013, 9(2): 760–771. doi: 10.1109/TII.2012.2221131
    SAINATH T N, KINGSBURY B, SAON G, et al. Deep convolutional neural networks for large-scale speech tasks[J]. Neural Networks, 2015, 64: 39–48. doi: 10.1016/j.neunet.2014.08.005
    GRAVES A and SCHMIDHUBER J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Networks, 2005, 18(5/6): 602–610. doi: 10.1016/j.neunet.2005.06.042
    GRAVES A, FERNÁNDEZ S, and GOMEZ F. Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks[C]. The 23rd International Conference on Machine Learning, Pittsburgh, USA, 2006: 369–367.
    刘宏哲, 杨少鹏, 袁家政, 等. 基于单一神经网络的多尺度人脸检测[J]. 电子与信息学报, 2018, 40(11): 2598–2605. doi: 10.11999/JEIT180163

    LIU Hongzhe, YANG Shaopeng, YUAN Jiazheng, et al. Multi-scale face detection based on single neural network[J]. Journal of Electronics &Information Technology, 2018, 40(11): 2598–2605. doi: 10.11999/JEIT180163
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  3770
  • HTML全文浏览量:  1123
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-29
  • 修回日期:  2020-05-08
  • 网络出版日期:  2020-05-28
  • 刊出日期:  2020-11-16

目录

    /

    返回文章
    返回