高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于密集连接卷积神经网络的入侵检测技术研究

缪祥华 单小撤

缪祥华, 单小撤. 基于密集连接卷积神经网络的入侵检测技术研究[J]. 电子与信息学报, 2020, 42(11): 2706-2712. doi: 10.11999/JEIT190655
引用本文: 缪祥华, 单小撤. 基于密集连接卷积神经网络的入侵检测技术研究[J]. 电子与信息学报, 2020, 42(11): 2706-2712. doi: 10.11999/JEIT190655
Xianghua MIAO, Xiaoche SHAN. Research on Intrusion Detection Technology Based on Densely Connected Convolutional Neural Networks[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2706-2712. doi: 10.11999/JEIT190655
Citation: Xianghua MIAO, Xiaoche SHAN. Research on Intrusion Detection Technology Based on Densely Connected Convolutional Neural Networks[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2706-2712. doi: 10.11999/JEIT190655

基于密集连接卷积神经网络的入侵检测技术研究

doi: 10.11999/JEIT190655
详细信息
    作者简介:

    缪祥华:男,1972年,博士后,副教授,研究方向为信息安全、网络安全、移动通信安全

    单小撤:男,1992年,硕士生,研究方向为信息安全、入侵检测

    通讯作者:

    单小撤 2258868766@qq.com

  • 中图分类号: TN918.91

Research on Intrusion Detection Technology Based on Densely Connected Convolutional Neural Networks

  • 摘要: 卷积神经网络在入侵检测技术领域中已得到广泛应用,一般地认为层次越深的网络结构其在特征提取、检测准确率等方面就越精确。但也伴随着梯度弥散、泛化能力不足且参数量大准确率不高等问题。针对上述问题,该文提出将密集连接卷积神经网络(DCCNet)应用到入侵检测技术中,并通过使用混合损失函数达到提升检测准确率的目的。用KDD 99数据集进行实验,将实验结果与常用的LeNet神经网络、VggNet神经网络结构相比。分析显示在检测的准确率上有一定的提高,而且缓解了在训练过程中梯度弥散问题。
  • 图  1  密集连接入侵检测模型框架

    图  2  3个密集连接模块的完整密集连接神经网络

    图  3  一个5层密集连接模块

    图  4  在KDD 99数据集上不同条件下的检测准确率

    图  5  不同损失函数下的5种特征类型检测准确率

    表  1  4种攻击类型

    攻击类型备注
    Dos拒绝服务攻击
    R2l远程主机的未授权访问
    U2r授权的本地超级用户特权访问
    Probe端口监视或扫描
    下载: 导出CSV

    表  2  密集连接卷积神经网络具体结构

    层结构输出尺寸46层网络结构62层网络结构102层网络结构126层网络结构
    卷积层24×243×3卷积,步长=2
    密集连接块112×12$\left[ \begin{array}{l} {\rm{1}} \times {\rm{1conv}} \\ {\rm{3}} \times {\rm{3conv}} \\ \end{array} \right] \times 4$$\left[ \begin{array}{l} {\rm{1}} \times {\rm{1conv}} \\ {\rm{3}} \times {\rm{3conv}} \\ \end{array} \right] \times 6$$\left[ \begin{array}{l} {\rm{1}} \times {\rm{1conv}} \\ {\rm{3}} \times {\rm{3conv}} \\ \end{array} \right] \times 12$$\left[ \begin{array}{l} {\rm{1}} \times {\rm{1conv}} \\ {\rm{3}} \times {\rm{3conv}} \\ \end{array} \right] \times 12$
    过渡层112×121×1卷积
    6×62×2平均池化
    密集连接块26×6$\left[ \begin{array}{l} {\rm{1}} \times {\rm{1conv}} \\ {\rm{3}} \times {\rm{3conv}} \\ \end{array} \right] \times 6$$\left[ \begin{array}{l} {\rm{1}} \times {\rm{1conv}} \\ {\rm{3}} \times {\rm{3conv}} \\ \end{array} \right] \times 10$$\left[ \begin{array}{l} {\rm{1}} \times {\rm{1conv}} \\ {\rm{3}} \times {\rm{3conv}} \\ \end{array} \right] \times 24$ $\left[ \begin{array}{l} {\rm{1}} \times {\rm{1conv}} \\ {\rm{3}} \times {\rm{3conv}} \\ \end{array} \right] \times 24$
    过渡层26×61×1卷积
    3×32×2平均池化
    密集连接块33×3$\left[ \begin{array}{l} {\rm{1}} \times {\rm{1conv}} \\ {\rm{3}} \times {\rm{3conv}} \\ \end{array} \right] \times 10$$\left[ \begin{array}{l} {\rm{1}} \times {\rm{1conv}} \\ {\rm{3}} \times {\rm{3conv}} \\ \end{array} \right] \times 12$$\left[ \begin{array}{l} {\rm{1}} \times {\rm{1conv}} \\ {\rm{3}} \times {\rm{3conv}} \\ \end{array} \right] \times 12$$\left[ \begin{array}{l} {\rm{1}} \times {\rm{1conv}} \\ {\rm{3}} \times {\rm{3conv}} \\ \end{array} \right] \times 24$
    特征分类层1×13×3全局平局池化
    1×1250D全连接
    1×11000维损失函数层
    下载: 导出CSV

    表  3  本文实验模型数据与其他模型结果对比(%)

    模型准确率AC误报率FA
    本文98.761.32
    LeNet92.180.97
    IBIDM92.940.76
    IRes97.232.73
    MSCNN92.368.08
    下载: 导出CSV

    表  4  NSL-KDD数据集在不同模型下的准确率和召回率

    模型准确率AC召回率Recall
    本文0.9730.915
    LSTM-RESNET[14]0.9650.695
    文献[15]0.8720.928
    cPCA-AMSOM[16]0.9460.944
    下载: 导出CSV
  • LU Na, WU Yidan, FENG Li, et al. Deep Learning for fall detection: Three-dimensional CNN combined with LSTM on video kinematic data[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(1): 314–323. doi: 10.1109/JBHI.2018.2808281
    LIU Pengju. An intrusion detection system based on convolutional neural network[C]. The 11th International Conference on Computer and Automation Engineering, Perth, Australia, 2019. doi: 10.1145/3313991.3314009.
    刘月峰, 王成, 张亚斌, 等. 用于网络入侵检测的多尺度卷积CNN模型[J]. 计算机工程与应用, 2019, 55(3): 90–95, 153. doi: 10.3778/j.issn.1002-8331.1712-0021

    LIU Yuefeng, WANG Cheng, ZHANG Yabin, et al. Multiscale convolutional CNN model for network intrusion detection[J]. Computer Engineering and Applications, 2019, 55(3): 90–95, 153. doi: 10.3778/j.issn.1002-8331.1712-0021
    赵昱博. 基于卷积神经网络的入侵检测技术的研究[D]. [硕士论文], 哈尔滨工程大学, 2018.

    ZHAO Yibo. Research on intrusion detection technology based on convolutional neural network[D]. [Master dissertation], Harbin Engineering University, 2018.
    WANG Shengwei, WANG Hongkui, XIANG Sen, et al. Densely connected convolutional network block based autoencoder for panorama map compression[J]. Signal Processing: Image Communication, 2020, 80: 115678. doi: 10.1016/j.image.2019.115678
    WEN Yandong, ZHANG Kaipeng, LI Zhifeng, et al. A discriminative feature learning approach for deep face recognition[C]. The 14th European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 499–515. doi: 10.1007/978-3-319-46478-7_31.
    郭晨, 简涛, 徐从安, 等. 基于深度多尺度一维卷积神经网络的雷达舰船目标识别[J]. 电子与信息学报, 2019, 41(6): 1302–1309. doi: 10.11999/JEIT180677

    GUO Chen, JIAN Tao, XU Congan, et al. Radar HRRP target recognition based on deep multi-scale 1D convolutional neural network[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1302–1309. doi: 10.11999/JEIT180677
    范晓诗, 雷英杰, 王亚男, 等. 流量异常检测中的直觉模糊推理方法[J]. 电子与信息学报, 2015, 37(9): 2218–2224. doi: 10.11999/JEIT150023

    FAN Xiaoshi, LEI Yingjie, WANG Yanan, et al. Intuitionistic fuzzy reasoning method in traffic anomaly detection[J]. Journal of Electronics &Information Technology, 2015, 37(9): 2218–2224. doi: 10.11999/JEIT150023
    颜伟, 耿路, 周雷, 等. 基于海情和三次样条插值算法的舰船雷达散射截面优化分析方法[J]. 电子与信息学报, 2018, 40(3): 579–586. doi: 10.11999/JEIT170562

    YAN Wei, GENG Lu, ZHOU Lei, et al. Optimization analysis method on ship RCS based on sea conditions and cubic spline interpolation algorithm[J]. Journal of Electronics &Information Technology, 2018, 40(3): 579–586. doi: 10.11999/JEIT170562
    CHAWLA A, LEE B, FALLON S, et al. Host based intrusion detection system with combined CNN/RNN Model[C]. Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Dublin, Ireland, 2019. doi: 10.1007/978-3-030-13453-2_12.
    CORTES C, GONZALVO X, KUZNETSOV V, et al. AdaNet: Adaptive structural learning of artificial neural networks[J]. arXiv: 2016, 1607.01097.
    SHARMA S, GIGRAS Y, CHHIKARA R, et al. Analysis of NSL KDD dataset using classification algorithms for intrusion detection system[J]. Recent Patents on Engineering, 2019, 13(2): 142–147. doi: 10.2174/1872212112666180402122150
    POTLURI S, AHMED S, and DIEDRICH C. Convolutional neural networks for multi-class intrusion detection system[C]. The 6th International Conference on Mining Intelligence and Knowledge Exploration, Cluj, Romania, 2018: 225–238. doi: 10.1007/978-3-030-05918-7_20.
    YANG Yingen and WANG Zhongyang. Intrusion detection technology based on deep neural network[J]. Network Security Technology & Application, 2019(4): 37–41.
    SHONE N, NGOC T N, PHAI V D, et al. A deep learning approach to network intrusion detection[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2(1): 41–50. doi: 10.1109/TETCI.2017.2772792
    吴德鹏, 柳毅. 基于可变网络结构自组织映射的入侵检测模型[J]. 计算机工程与用, 2019, 5: 1–9.

    WU Depeng and LIU Yi. Intrusion detection model based on self-organizing mapping of variable network stucture[J]. Computer Engineering and Applications, 2019, 5: 1–9.
    陈红松, 陈京九. 基于循环神经网络的无线网络入侵检测分类模型构建与优化研究[J]. 电子与信息学报, 2019, 41(6): 1427–1433. doi: 10.11999/JEIT180691

    CHEN Hongsong and CHEN Jingjiu. Recurrent neural networks based wireless network intrusion detection and classification model construction and optimization[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1427–1433. doi: 10.11999/JEIT180691
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  3524
  • HTML全文浏览量:  1047
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-29
  • 修回日期:  2020-05-09
  • 网络出版日期:  2020-05-28
  • 刊出日期:  2020-11-16

目录

    /

    返回文章
    返回