STRUKOV D B, SNIDER G S, STEWART G R, et al. The missing memristor found[J]. Nature, 2008, 453(1): 80–83. doi: 10.1038/nature06932
|
CHUA L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. doi: 10.1109/tct.1971.1083337
|
王春华, 蔺海荣, 孙晶如, 等. 基于忆阻器的混沌、存储器及神经网络电路研究进展[J]. 电子与信息学报, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821WANG Chunhua, LIN Hairong, SUN Jingru, et al. Research progress on chaos, memory and neural network circuits based on memristor[J]. Journal of Electronics &Information Technology, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821
|
ZHOU Ling, WANG Chunhua, and ZHOU Lili. Generating hyperchaotic multi-wing attractor in a 4D memristive circuit[J]. Nonlinear Dynamics, 2016, 85(4): 2653–2663. doi: 10.1007/s11071-016-2852-8
|
YUAN Fang, WANG Guangyi, and WANG Xiaowei. Extreme multistability in a memristor-based multi-scroll hyper-chaotic system[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2016, 26(7): 073107. doi: 10.1063/1.4958296
|
阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现[J]. 物理学报, 2016, 65(19): 25–35. doi: 10.7498/aps.65.190502RUAN Jingya, SUN Kehui, and MOU Jun. Memristor-based Lorenz hyper-chaotic system and its circuit implementation[J]. Acta Physica Sinica, 2016, 65(19): 25–35. doi: 10.7498/aps.65.190502
|
WANG Chunhua, LIU Xiaoming, and XIA Hu. Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N +1-scroll chaotic attractors system[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2017, 27(3): 033114. doi: 10.1063/1.4979039
|
肖利全, 段书凯, 王丽丹. 基于Julia分形的多涡卷忆阻混沌系统[J]. 物理学报, 2018, 67(9): 090502. doi: 10.7498/aps.67.20172761XIAO Liquan, DUAN Shukai, and WANF Lidan. Julia fractal based multi-scroll memristive chaotic system[J]. Acta Physica Sinica, 2018, 67(9): 090502. doi: 10.7498/aps.67.20172761
|
闵富红, 王珠林, 王恩荣, 等. 新型忆阻器混沌电路及其在图像加密中的应用[J]. 电子与信息学报, 2016, 38(10): 2681–2688. doi: 10.11999/JEIT160178MIN Fuhong, WANG Zhulin, WANG Enrong, et al. New memristor chaotic circuit and its application to image encryption[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2681–2688. doi: 10.11999/JEIT160178
|
BAO Bocheng, QIAN Hui, XU Quan, et al. Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network[J]. Frontiers in Computational Neuroscience, 2017, 11: article81, 1–14. doi: 10.3389/fncom.2017.00081
|
BAO Han, HU Aihuang, LIU Wenbo, et al. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(2): 502–511. doi: 10.1109/TNNLS.2019.2905137
|
RINZEL J. Bursting Oscillations in An Excitable Membrane Model[M]. SLEEMAN B D and JARVIS R J. Ordinary and Partial Differential Equations. Berlin, Gormany: Springer, 1985: 304-316.
|
李旭, 张正娣, 毕勤胜. 两时间尺度下非光滑广义蔡氏电路系统的簇发振荡机理[J]. 物理学报, 2013, 62(22): 220502. doi: 10.7498/aps.62.220502LI Xu, ZHANG Zhengdi, and BI Qinsheng. Mechanism of bursting oscillations in non-smooth generalized Chua’s circuit with two time scales[J]. Acta Physica Sinica, 2013, 62(22): 220502. doi: 10.7498/aps.62.220502
|
李芳苑, 陈墨, 武花干. 忆阻高通滤波电路准周期与混沌环面簇发振荡及慢通道效应[J]. 电子与信息学报, 2020, 42(4): 811–817. doi: 10.11999/JEIT190373LI Fangyuan, CHEN Mo, and WU Huagan. Quasi-periodic, chaotic-torus bursting oscillations and SlowPassage effect in memristive high-pass filter circuit[J]. Journal of Electronics &Information Technology, 2020, 42(4): 811–817. doi: 10.11999/JEIT190373
|
HAN Xiujing, BI Qinsheng, ZHANG Chun, et al. Delayed bifurcations to repetitive spiking and classification of delay-induced bursting[J]. International Journal of Bifurcation and Chaos, 2014, 24(7): 1450098. doi: 10.1142/s0218127414500989
|
KOVACIC I and BRENNAN M J. The Duffing Equation: Nonlinear Oscillators and Their Behaviour[M]. Chichester, West Sussex: John Wiley & Sons, 2011: 2–5.
|
HAN Xiujing, ZHANG Yi, BI Qinsheng, et al. Two novel bursting patterns in the Duffing system with multiple-frequency slow parametric excitations[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28(4): 043111. doi: 10.1063/1.5012519
|
KENGNE J, TABEKOUENG Z N, and FOTSIN H B. Coexistence of multiple attractors and crisis route to chaos in autonomous third order Duffing-Holmes type chaotic oscillators[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 36: 29–44. doi: 10.1016/j.cnsns.2015.11.009
|
YU Yue, ZHANG Zhengdi, and BI Qinsheng. Multistability and fast-slow analysis for van der Pol-Duffing oscillator with varying exponential delay feedback factor[J]. Applied Mathematical Modelling, 2018, 57: 448–458. doi: 10.1016/j.apm.2018.01.010
|
HAN Xiujing and BI Qinsheng. Bursting oscillations in Duffing’s equation with slowly changing external forcing[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(10): 4146–4152. doi: 10.1016/j.cnsns.2011.02.021
|
SABARATHINAM S, VOLOS C K, and THAMILMARAN K. Implementation and study of the nonlinear dynamics of a memristor-based Duffing oscillator[J]. Nonlinear Dynamics, 2017, 87(1): 37–49. doi: 10.1007/s11071-016-3022-8
|
BODO B, FOUDA J S A E, MVOGO A, et al. Experimental hysteresis in memristor based Duffing oscillator[J]. Chaos, Solitons & Fractals, 2018, 115: 190–195. doi: 10.1016/j.chaos.2018.08.030
|
VARSHNEY V, SABARATHINAM S, PRASAD A, et al. Infinite number of hidden attractors in memristor-based autonomous duffing oscillator[J]. International Journal of Bifurcation and Chaos, 2018, 28(1): 1850013. doi: 10.1142/s021812741850013x
|
ADHIKARI S P, SAH M P, KIM H, et al. Three fingerprints of memristor[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60(11): 3008–3021. doi: 10.1109/tcsi.2013.2256171
|