高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双曲正切忆阻器的Duffing系统中簇发、共存分析及其DSP实现

王梦蛟 邓勇 李志军 曾以成

王梦蛟, 邓勇, 李志军, 曾以成. 基于双曲正切忆阻器的Duffing系统中簇发、共存分析及其DSP实现[J]. 电子与信息学报, 2020, 42(4): 818-826. doi: 10.11999/JEIT190631
引用本文: 王梦蛟, 邓勇, 李志军, 曾以成. 基于双曲正切忆阻器的Duffing系统中簇发、共存分析及其DSP实现[J]. 电子与信息学报, 2020, 42(4): 818-826. doi: 10.11999/JEIT190631
Mengjiao WANG, Yong DENG, Zhijun LI, Yicheng ZENG. Bursting, Coexistence Analysis and DSP Implementation of Duffing System Based on Hyperbolic-tangent Memristor[J]. Journal of Electronics & Information Technology, 2020, 42(4): 818-826. doi: 10.11999/JEIT190631
Citation: Mengjiao WANG, Yong DENG, Zhijun LI, Yicheng ZENG. Bursting, Coexistence Analysis and DSP Implementation of Duffing System Based on Hyperbolic-tangent Memristor[J]. Journal of Electronics & Information Technology, 2020, 42(4): 818-826. doi: 10.11999/JEIT190631

基于双曲正切忆阻器的Duffing系统中簇发、共存分析及其DSP实现

doi: 10.11999/JEIT190631
基金项目: 国家自然科学基金(11747087),湖南省自然科学基金(2019JJ50624),湖南省教育厅科学研究项目(17C1530),广东省自然科学基金(2017A030310659)
详细信息
    作者简介:

    王梦蛟:男,1983年生,讲师,硕士生导师,研究方向为非线性系统动力学分析及其电路实现、信号噪声抑制和特征提取

    邓勇:男,1995年生,硕士生,研究方向为非线性系统、忆阻器混沌系统

    李志军:男,1973年生,教授,硕士生导师,研究方向为混沌电路与系统、电流模式电路连续时间滤波器设计

    曾以成:男,1962年生,教授,博士生导师,研究方向为忆阻器混沌电路设计与应用、利用混沌电路系统进行微弱信号检测

    通讯作者:

    王梦蛟 wangmengjiao_1983@163.com

  • 中图分类号: TN601

Bursting, Coexistence Analysis and DSP Implementation of Duffing System Based on Hyperbolic-tangent Memristor

Funds: The National Natural Science Foundation of China (11747087), The Natural Science Foundation of Hunan Province (2019JJ50624), The Research Foundation of Education Department of Hunan Province (17C1530), The Natural Science Foundation of Guangdong Province(2017A030310659)
  • 摘要: 忆阻器作为第4种基本电路元件由蔡少棠首次提出,它的提出为混沌电路的设计和工程应用提供了新思路。该文通过在Homles型Duffing系统中引入一个双曲正切忆阻模型,得到了一个新忆阻Duffing非自治系统。利用转换相图、相图、Lyapunov指数等,揭示了该系统具有振荡尖峰数目可控簇发、非完全对称双边簇发、非完全对称的簇发共存、多种周期混沌共存等新颖动力学行为。并通过分岔图及平衡点分析,研究了其簇发产生机理。采用Multisim电路仿真与数字信号处理平台(DSP)对系统进行了硬件实现,与理论分析基本一致的实验结果证明该系统是可行的且是物理可实现的。
  • 图  1  系统式(3)产生的双涡卷混沌和单涡卷混沌吸引子

    图  2  F变化的共存分岔图

    图  3  对应的Lyapunov指数

    图  4  系统在IC1下产生的非完全对称双边簇发(IAC=0.1sin(0.004×2πt))

    图  5  IC1双边与上支IC2单边、上支IC2与下支IC1单边、上支IC1与下支IC2单边簇发共存(IAC=0.1sin(F×2πt))

    图  6  多种混沌、周期共存(IAC=0.1sin(2πF t))

    图  7  尖峰数为5的簇发(IAC=0.2sin(0.004×2πt))

    图  8  尖峰数可控簇发

    图  9  系统电路原理图

    图  10  图示仪中混沌与共存

    图  11  DSP硬件实验图和示波器捕获的簇发

  • STRUKOV D B, SNIDER G S, STEWART G R, et al. The missing memristor found[J]. Nature, 2008, 453(1): 80–83. doi: 10.1038/nature06932
    CHUA L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. doi: 10.1109/tct.1971.1083337
    王春华, 蔺海荣, 孙晶如, 等. 基于忆阻器的混沌、存储器及神经网络电路研究进展[J]. 电子与信息学报, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821

    WANG Chunhua, LIN Hairong, SUN Jingru, et al. Research progress on chaos, memory and neural network circuits based on memristor[J]. Journal of Electronics &Information Technology, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821
    ZHOU Ling, WANG Chunhua, and ZHOU Lili. Generating hyperchaotic multi-wing attractor in a 4D memristive circuit[J]. Nonlinear Dynamics, 2016, 85(4): 2653–2663. doi: 10.1007/s11071-016-2852-8
    YUAN Fang, WANG Guangyi, and WANG Xiaowei. Extreme multistability in a memristor-based multi-scroll hyper-chaotic system[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2016, 26(7): 073107. doi: 10.1063/1.4958296
    阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现[J]. 物理学报, 2016, 65(19): 25–35. doi: 10.7498/aps.65.190502

    RUAN Jingya, SUN Kehui, and MOU Jun. Memristor-based Lorenz hyper-chaotic system and its circuit implementation[J]. Acta Physica Sinica, 2016, 65(19): 25–35. doi: 10.7498/aps.65.190502
    WANG Chunhua, LIU Xiaoming, and XIA Hu. Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N +1-scroll chaotic attractors system[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2017, 27(3): 033114. doi: 10.1063/1.4979039
    肖利全, 段书凯, 王丽丹. 基于Julia分形的多涡卷忆阻混沌系统[J]. 物理学报, 2018, 67(9): 090502. doi: 10.7498/aps.67.20172761

    XIAO Liquan, DUAN Shukai, and WANF Lidan. Julia fractal based multi-scroll memristive chaotic system[J]. Acta Physica Sinica, 2018, 67(9): 090502. doi: 10.7498/aps.67.20172761
    闵富红, 王珠林, 王恩荣, 等. 新型忆阻器混沌电路及其在图像加密中的应用[J]. 电子与信息学报, 2016, 38(10): 2681–2688. doi: 10.11999/JEIT160178

    MIN Fuhong, WANG Zhulin, WANG Enrong, et al. New memristor chaotic circuit and its application to image encryption[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2681–2688. doi: 10.11999/JEIT160178
    BAO Bocheng, QIAN Hui, XU Quan, et al. Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network[J]. Frontiers in Computational Neuroscience, 2017, 11: article81, 1–14. doi: 10.3389/fncom.2017.00081
    BAO Han, HU Aihuang, LIU Wenbo, et al. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(2): 502–511. doi: 10.1109/TNNLS.2019.2905137
    RINZEL J. Bursting Oscillations in An Excitable Membrane Model[M]. SLEEMAN B D and JARVIS R J. Ordinary and Partial Differential Equations. Berlin, Gormany: Springer, 1985: 304-316.
    李旭, 张正娣, 毕勤胜. 两时间尺度下非光滑广义蔡氏电路系统的簇发振荡机理[J]. 物理学报, 2013, 62(22): 220502. doi: 10.7498/aps.62.220502

    LI Xu, ZHANG Zhengdi, and BI Qinsheng. Mechanism of bursting oscillations in non-smooth generalized Chua’s circuit with two time scales[J]. Acta Physica Sinica, 2013, 62(22): 220502. doi: 10.7498/aps.62.220502
    李芳苑, 陈墨, 武花干. 忆阻高通滤波电路准周期与混沌环面簇发振荡及慢通道效应[J]. 电子与信息学报, 2020, 42(4): 811–817. doi: 10.11999/JEIT190373

    LI Fangyuan, CHEN Mo, and WU Huagan. Quasi-periodic, chaotic-torus bursting oscillations and SlowPassage effect in memristive high-pass filter circuit[J]. Journal of Electronics &Information Technology, 2020, 42(4): 811–817. doi: 10.11999/JEIT190373
    HAN Xiujing, BI Qinsheng, ZHANG Chun, et al. Delayed bifurcations to repetitive spiking and classification of delay-induced bursting[J]. International Journal of Bifurcation and Chaos, 2014, 24(7): 1450098. doi: 10.1142/s0218127414500989
    KOVACIC I and BRENNAN M J. The Duffing Equation: Nonlinear Oscillators and Their Behaviour[M]. Chichester, West Sussex: John Wiley & Sons, 2011: 2–5.
    HAN Xiujing, ZHANG Yi, BI Qinsheng, et al. Two novel bursting patterns in the Duffing system with multiple-frequency slow parametric excitations[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28(4): 043111. doi: 10.1063/1.5012519
    KENGNE J, TABEKOUENG Z N, and FOTSIN H B. Coexistence of multiple attractors and crisis route to chaos in autonomous third order Duffing-Holmes type chaotic oscillators[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 36: 29–44. doi: 10.1016/j.cnsns.2015.11.009
    YU Yue, ZHANG Zhengdi, and BI Qinsheng. Multistability and fast-slow analysis for van der Pol-Duffing oscillator with varying exponential delay feedback factor[J]. Applied Mathematical Modelling, 2018, 57: 448–458. doi: 10.1016/j.apm.2018.01.010
    HAN Xiujing and BI Qinsheng. Bursting oscillations in Duffing’s equation with slowly changing external forcing[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(10): 4146–4152. doi: 10.1016/j.cnsns.2011.02.021
    SABARATHINAM S, VOLOS C K, and THAMILMARAN K. Implementation and study of the nonlinear dynamics of a memristor-based Duffing oscillator[J]. Nonlinear Dynamics, 2017, 87(1): 37–49. doi: 10.1007/s11071-016-3022-8
    BODO B, FOUDA J S A E, MVOGO A, et al. Experimental hysteresis in memristor based Duffing oscillator[J]. Chaos, Solitons & Fractals, 2018, 115: 190–195. doi: 10.1016/j.chaos.2018.08.030
    VARSHNEY V, SABARATHINAM S, PRASAD A, et al. Infinite number of hidden attractors in memristor-based autonomous duffing oscillator[J]. International Journal of Bifurcation and Chaos, 2018, 28(1): 1850013. doi: 10.1142/s021812741850013x
    ADHIKARI S P, SAH M P, KIM H, et al. Three fingerprints of memristor[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60(11): 3008–3021. doi: 10.1109/tcsi.2013.2256171
  • 加载中
图(11)
计量
  • 文章访问数:  2214
  • HTML全文浏览量:  820
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-23
  • 修回日期:  2020-02-28
  • 网络出版日期:  2020-03-10
  • 刊出日期:  2020-06-04

目录

    /

    返回文章
    返回