高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于列表译码方法在查询访问模型下含错学习问题的分析

王明强 庄金成

王明强, 庄金成. 基于列表译码方法在查询访问模型下含错学习问题的分析[J]. 电子与信息学报, 2020, 42(2): 322-326. doi: 10.11999/JEIT190624
引用本文: 王明强, 庄金成. 基于列表译码方法在查询访问模型下含错学习问题的分析[J]. 电子与信息学报, 2020, 42(2): 322-326. doi: 10.11999/JEIT190624
Mingqiang WANG, Jincheng ZHUANG. Analysis of Learning With Errors in Query Access Model: A List Decoding Approach[J]. Journal of Electronics & Information Technology, 2020, 42(2): 322-326. doi: 10.11999/JEIT190624
Citation: Mingqiang WANG, Jincheng ZHUANG. Analysis of Learning With Errors in Query Access Model: A List Decoding Approach[J]. Journal of Electronics & Information Technology, 2020, 42(2): 322-326. doi: 10.11999/JEIT190624

基于列表译码方法在查询访问模型下含错学习问题的分析

doi: 10.11999/JEIT190624
基金项目: 国家自然科学基金(61672019)
详细信息
    作者简介:

    王明强:男,1970年生,教授,研究方向为算法数论和公钥密码学

    庄金成:男,1987年生,教授,研究方向为算法数论和公钥密码学

    通讯作者:

    庄金成 jzhuang@sdu.edu.cn

  • 中图分类号: TN918; TP309

Analysis of Learning With Errors in Query Access Model: A List Decoding Approach

Funds: The National Natural Science Foundation of China (61672019)
  • 摘要: Regev在2005年提出了含错学习问题(LWE),这个问题与随机线性码的译码问题密切相关,并且在密码学特别是后量子密码学中应用广泛。原始的含错学习问题是在随机访问模型下提出的,有证据证明该问题的困难性。许多研究者注意到的一个事实是当攻击者可以选择样本时,该问题是容易的。但是目前据作者所知并没有一个完整的求解算法。该文分析了查询访问模型下的带有错误学习问题,给出了完整的求解算法。分析采用的工具是将该问题联系到隐藏数问题,然后应用傅里叶学习算法进行列表译码。
  • KEARNS M J and VAZIRANI U V. An Introduction to Computational Learning Theory[M]. Cambridge, London England: The MIT Press, 1994.
    BLUM A, KALAI A, and WASSERMAN H. Noise-tolerant learning, the parity problem, and the statistical query model[J]. Journal of the ACM, 2003, 50(4): 506–519. doi: 10.1145/792538.792543
    PIETRZAK K. Cryptography from learning parity with noise[C]. The 38th International Conference on Current Trends in Theory and Practice of Computer Science, Špindlerův Mlýn, Czech Republic, 2012: 99–114.
    REGEV O. On lattices, learning with errors, random linear codes, and cryptography[C]. The 37th Annual ACM Symposium on Theory of Computing, Baltimore, USA, 2005: 84–93.
    BONEH D and VENKATESAN R. Hardness of computing the most significant bits of secret keys in Diffie-Hellman and related schemes[C]. The 16th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 1996: 129–142.
    GALBRAITH S D and SHANI B. The multivariate hidden number problem[C]. The 8th International Conference on Information Theoretic Security, Lugano, Switzerland, 2015: 250–268.
    GOLDREICH O and LEVIN L A. A hard-core predicate for all one-way functions[C]. The 21st Annual ACM Symposium on Theory of Computing, Seattle, USA, 1989: 25–32.
    KUSHILEVITZ E and MANSOUR Y. Learning decision trees using the Fourier spectrum[C]. The 23rd Annual ACM Symposium on Theory of Computing, New Orleans, USA, 1991: 455–464.
    AKAVIA A, GOLDWASSER S, and SAFRA S. Proving hard-core predicates using list decoding[C]. The 44th Annual IEEE Symposium on Foundations of Computer Science, Cambridge, USA, 2003: 146–157.
    GALBRAITH S D, LAITY J, and SHANI B. Finding significant Fourier coefficients: Clarifications, simplifications, applications and limitations[J]. Chicago Journal of Theoretical Computer Science, 2018, 6: 1–38.
    AKAVIA A. Solving hidden number problem with one bit oracle and advice[C]. The 29th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2009: 337–354.
    MICCIANCIO D and MOL P. Pseudorandom knapsacks and the sample complexity of LWE search-to-decision reductions[C]. The 31st Annual Conference on Advances in Cryptology, Santa Barbara, USA, 2011: 465–484.
  • 加载中
计量
  • 文章访问数:  1713
  • HTML全文浏览量:  883
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-14
  • 修回日期:  2019-12-05
  • 网络出版日期:  2019-12-09
  • 刊出日期:  2020-02-19

目录

    /

    返回文章
    返回