高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向自动驾驶的车辆精确实时定位算法

沈连丰 张瑞 朱亚萍 吴怡

沈连丰, 张瑞, 朱亚萍, 吴怡. 面向自动驾驶的车辆精确实时定位算法[J]. 电子与信息学报, 2020, 42(1): 28-35. doi: 10.11999/JEIT190610
引用本文: 沈连丰, 张瑞, 朱亚萍, 吴怡. 面向自动驾驶的车辆精确实时定位算法[J]. 电子与信息学报, 2020, 42(1): 28-35. doi: 10.11999/JEIT190610
Lianfeng SHEN, Rui ZHANG, Yaping ZHU, Yi WU. High-precision and Real-time Localization Algorithm for Automatic Driving Vehicles[J]. Journal of Electronics & Information Technology, 2020, 42(1): 28-35. doi: 10.11999/JEIT190610
Citation: Lianfeng SHEN, Rui ZHANG, Yaping ZHU, Yi WU. High-precision and Real-time Localization Algorithm for Automatic Driving Vehicles[J]. Journal of Electronics & Information Technology, 2020, 42(1): 28-35. doi: 10.11999/JEIT190610

面向自动驾驶的车辆精确实时定位算法

doi: 10.11999/JEIT190610
基金项目: 国家自然科学基金(61601122, 61741102, U180526, 61571128)
详细信息
    作者简介:

    沈连丰:男,1952年生,教授,主要研究方向为宽带移动通信、泛在网络和车辆自组织网络等

    张瑞:男,1986年生,博士生,研究方向为短距无线通信、车辆自组织网络

    朱亚萍:女,1990年生,博士生,研究方向为短距无线通信、软件定义传感器网络

    吴怡:女,1970年生,教授,主要研究方向为通信与信息系统,车辆自组织网络等

    通讯作者:

    沈连丰 lfshen@seu.edu.cn

  • 中图分类号: TN953; TP872

High-precision and Real-time Localization Algorithm for Automatic Driving Vehicles

Funds: The National Natural Science Foundation of China (61601122, 61741102, U180526, 61571128)
  • 摘要: 针对车辆自组织网络(VANETs)中的车辆定位问题,以提高定位精度和实时性为目标,该文提出一种面向自动驾驶的车辆精确实时定位算法,包括基于矩阵束(MP)与非线性拟合(NLF)以及基于视觉感知两种技术。基于MP-NLF的技术通过联合TOA/AOA估计进行车辆单站定位,并引入高分辨率估计以提高估计精度;基于视觉感知的技术通过提取定位范围内视觉感知图像的特征信息来完成定位,并结合惯性信息进行无迹卡尔曼滤波进一步提高精度。仿真结果表明,与传统多径指纹算法相比,所提算法即使在低信噪比情况下也具有较好的定位性能。
  • 图  1  VANETs车辆定位场景示意图

    图  2  车辆端ULA接收多径信号示意图

    图  3  车辆端ULA接收示意图

    图  4  车辆视觉感知定位示意图

    图  5  VANETs车辆定位仿真场景图

    图  6  车辆行驶过程中所提算法与SP算法的均方根误差比较

    图  7  不同阵元数目下所提算法与SP算法定位误差的CDF分布(Bw = 10 MHz)

    图  8  不同信号带宽下所提算法与SP算法定位误差的CDF分布(M = 8)

    表  1  系统仿真参数设置

    仿真参数参数值
    OFDM子载波数目K = 16
    ULA阵元数目M4/6/8/10/12
    信号带宽Bw (MHz)5/10/20
    SP算法中每次快拍的采样数Ns = 8
    SP算法中数据点的快拍数Ld = 50
    SP算法中测试点的快拍数Lt = 20
    下载: 导出CSV
  • KOOPMAN P and WAGNER M. Autonomous vehicle safety: An interdisciplinary challenge[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(1): 90–96. doi: 10.1109/MITS.2016.2583491
    MOLINA-MASEGOSA R and GOZALVEZ J. LTE-V for sidelink 5G V2X vehicular communications: A new 5G technology for short-range vehicle-to-everything communications[J]. IEEE Vehicular Technology Magazine, 2017, 12(4): 30–39. doi: 10.1109/MVT.2017.2752798
    LI Linjing, LI Xin, CHENG Changjian, et al. Research collaboration and ITS topic evolution: 10 years at T-ITS[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3): 517–523. doi: 10.1109/TITS.2010.2059070
    SHI Yanjun, PAN Yaohui, ZHANG Zihui, et al. A 5G-V2X based collaborative motion planning for autonomous industrial vehicles at road intersections[C]. 2018 IEEE International Conference on Systems, Man, and Cybernetics, Miyazaki, Japan, 2018: 3744–3748.
    LUO Guiyang, YUAN Quan, ZHOU Haibo, et al. Cooperative vehicular content distribution in edge computing assisted 5G-VANET[J]. China Communications, 2018, 15(7): 1–17. doi: 10.1109/CC.2018.8424578
    CHEN Xiaozhi, MA Huimin, WAN Ji, et al. Multi-view 3D object detection network for autonomous driving[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6526–6534.
    XIAO Yunqiu and REN Dakai. A hierarchical decision architecture for network-assisted automatic driving[C]. 2018 IEEE International Conference on Energy Internet, Beijing, China 2018: 35–37.
    段建民, 杨晨, 石慧. 基于Pure Pursuit算法的智能车路径跟踪[J]. 北京工业大学学报, 2016, 42(9): 1301–1306.

    DUAN Jianmin, YANG Chen, and SHI Hui. Path tracking based on pure pursuit algorithm for intelligent vehicles[J]. Journal of Beijing University of Technology, 2016, 42(9): 1301–1306.
    李俨, 曹一卿, 陈书平, 等. 5G与车联网——基于移动通信的车联网技术与智能网联汽车[M]. 北京: 电子工业出版社, 2019.
    王庆, 张小国. 车辆组合定位与导航系统——理论、方法及应用[M]. 北京: 科学出版社, 2016.
    ZHANG Rui, XIA Weiwei, YAN Feng, et al. A single-site positioning method based on TOA and DOA estimation using virtual stations in NLOS environment[J]. China Communications, 2019, 16(2): 146–159.
    WANG Zhenyu, ZHENG Jun, WU Yuying, et al. A centrality-based RSU deployment approach for vehicular ad hoc networks[C]. 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–5.
    GABER A and OMAR A. A study of wireless indoor positioning based on joint TDOA and DOA estimation using 2-D matrix pencil algorithms and IEEE 802.11ac[J]. IEEE Transactions on Wireless Communications, 2015, 14(5): 2440–2454. doi: 10.1109/TWC.2014.2386869
    AKAIKE H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716–723. doi: 10.1109/TAC.1974.1100705
    FASCISTA A, CICCARESE G, COLUCCIA A, et al. A localization algorithm based on V2I communications and AOA estimation[J]. IEEE Signal Processing Letters, 2017, 24(1): 126–130. doi: 10.1109/LSP.2016.2639098
    ZHANG Dian, LIU Yunhuai, GUO Xiaonan, et al. On distinguishing the multiple radio paths in RSS-based ranging[C]. 2012 Proceedings IEEE INFOCOM. Orlando, USA, 2012: 2201–2209.
    黄铫, 张天骐, 高清山, 等. 一种提高无迹卡尔曼滤波精确度的方法[J]. 计算机仿真, 2010, 27(3): 348–352. doi: 10.3969/j.issn.1006-9348.2010.03.085

    HUANG Yao, ZHANG Tianqi, GAO Qingshan, et al. A method improving the accuracy of UKF[J]. Computer Simulation, 2010, 27(3): 348–352. doi: 10.3969/j.issn.1006-9348.2010.03.085
    KUPERSHTEIN E, WAX M, and COHEN I. Single-site emitter localization via multipath fingerprinting[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 10–21. doi: 10.1109/TSP.2012.2222395
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  3082
  • HTML全文浏览量:  1484
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-12
  • 修回日期:  2019-11-21
  • 网络出版日期:  2019-12-04
  • 刊出日期:  2020-01-21

目录

    /

    返回文章
    返回