高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高斯核显性映射的核归一化解相关仿射投影P范数算法

赵知劲 陈思佳

赵知劲, 陈思佳. 基于高斯核显性映射的核归一化解相关仿射投影P范数算法[J]. 电子与信息学报, 2020, 42(8): 1896-1901. doi: 10.11999/JEIT190602
引用本文: 赵知劲, 陈思佳. 基于高斯核显性映射的核归一化解相关仿射投影P范数算法[J]. 电子与信息学报, 2020, 42(8): 1896-1901. doi: 10.11999/JEIT190602
Zhijin ZHAO, Sijia CHEN. A Kernel Normalization Decorrelated Affine Projection P-norm Algorithm Based on Gaussian Kernel Explicit Mapping[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1896-1901. doi: 10.11999/JEIT190602
Citation: Zhijin ZHAO, Sijia CHEN. A Kernel Normalization Decorrelated Affine Projection P-norm Algorithm Based on Gaussian Kernel Explicit Mapping[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1896-1901. doi: 10.11999/JEIT190602

基于高斯核显性映射的核归一化解相关仿射投影P范数算法

doi: 10.11999/JEIT190602
详细信息
    作者简介:

    赵知劲:女,1959生,教授、博士生导师,研究方向为通信信号处理

    陈思佳:女,1995生,硕士生,研究方向为自适应信号处理

    通讯作者:

    赵知劲 zhaozj03@hdu.edu.cn

  • 中图分类号: TN911.7

A Kernel Normalization Decorrelated Affine Projection P-norm Algorithm Based on Gaussian Kernel Explicit Mapping

  • 摘要:

    为了降低核仿射投影P范数(KAPP)算法的计算量和存储容量,提高在输入信号强相关时KAPP算法的收敛速度和稳态性能,该文提出基于高斯核显性映射的核归一化解相关APP(KNDAPP-GKEM)算法。该算法利用归一化解相关方法预先解除输入信号的相关性;利用高斯核显式映射方法近似得到显式核函数,消除了对历史数据的依赖,解决了KAPP算法因结构不断生长导致的计算量和存储容量过大的问题。α稳定分布噪声背景下的非线性系统辨识仿真结果表明,在输入信号强相关时KNDAPP-GKEM算法收敛速度快,非线性系统辨识稳态均方误差小,训练所需时间呈线性缓慢增长,有利于实际非线性系统辨识的应用。

  • 图  1  非线性系统辨识框图

    图  2  维度D对KNDAPP-GKEM算法性能影响

    图  3  核参数h对KNDAPP-GKEM算法的性能影响

    图  4  $\alpha $稳定分布噪声背景下3种算法性能比较

    图  5  不同噪声强度下KNDAPP-GKEM算法性能

    表  1  KNDAPP-GKEM算法在n时刻的计算复杂度

    迭代步骤乘法运算次数加法运算次数计算复杂度
    映射得到$\varphi ({{x}}(n)$DL+DDLDO(1)
    归一化计算${{{Z}}_{\rm{N}}}(n)$2K3+3DK2+2D2K3DK2+2D2K+2K3D2–2DK–3K2 O(K3)
    计算y(n), e(n)和ep(n)DK +KDKO(K)
    更新权重${{w}}{\rm{(}}n{\rm{)}}$DK+D+1DKO(K)
    下载: 导出CSV
  • OZEKI K and UMEDA T. An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties[J]. Electronics and Communications in Japan, 1984, 67(5): 19–27. doi: 10.1002/ecja.4400670503
    王世元, 史春芬, 蒋云翔, 等. 基于q梯度的仿射投影算法及其稳态均方收敛分析[J]. 电子与信息学报, 2018, 40(10): 2402–2407. doi: 10.11999/JEIT171125

    WANG Shiyuan, SHI Chunfen, JIANG Yunxiang, et al. Q-affine projection algorithm and its steady-state mean square convergence analysis[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2402–2407. doi: 10.11999/JEIT171125
    王兰, 杨育红, 李良山. 解相关变阶仿射投影窄带干扰抑制算法[J]. 信息工程大学学报, 2016, 17(3): 266–269, 280. doi: 10.3969/j.issn.1671-0673.2016.03.003

    WANG Lan, YANG Yuhong, and LI Liangshan. Decorrelating affine projection algorithm with variable order for narrowband interference suppression[J]. Journal of Information Engineering University, 2016, 17(3): 266–269, 280. doi: 10.3969/j.issn.1671-0673.2016.03.003
    LIU Weifeng, PRÍNCIPE J C, and HAYKIN S. Kernel Adaptive Filtering: A Comprehensive Introduction[M]. Hoboken, USA: Wiley, 2010: 69–93.
    李群生, 赵剡, 寇磊, 等. 一种基于多尺度核学习的仿射投影滤波算法[J]. 电子与信息学报, 2020, 42(4): 924–931. doi: 10.11999/JEIT190023

    LI Qunsheng, ZHAO Yan, KOU Lei, et al. An affine projection algorithm with multi-scale kernels learning[J]. Journal of Electronics &Information Technology, 2020, 42(4): 924–931. doi: 10.11999/JEIT190023
    邱天爽, 张旭秀, 李小兵, 等. 统计信号处理: 非高斯信号处理及其应用[M]. 北京: 电子工业出版社, 2004: 131–171.

    QIU Tianshuang, ZHANG Xuxiu, LI Xiaobin, et al. Statistical Signal Processing: Non-Gauss Signal Processing and Its Application[M]. Beijing: Electronics Industry Press, 2004: 131–171.
    金明明. 核自适应滤波算法研究[D]. [硕士论文], 杭州电子科技大学, 2017: 48–54.

    JIN Mingming. The research on kernel adaptive filtering algorithms[D]. [Master dissertation], Hangzhou Dianzi University, 2017: 48–54.
    刘勇, 江沙里, 廖士中. 基于近似高斯核显式描述的大规模SVM求解[J]. 计算机研究与发展, 2014, 51(10): 2171–2177. doi: 10.7544/issn1000-1239.2014.20130825

    LIU Yong, JIANG Shali, and LIAO Shizhong. Approximate gaussian kernel for large-scale SVM[J]. Journal of Computer Research and Development, 2014, 51(10): 2171–2177. doi: 10.7544/issn1000-1239.2014.20130825
    RAHIMI A and RECHT B. Uniform approximation of functions with random bases[C]. Proceedings of the 46th Annual Allerton Conference on Communication, Control, and Computing, Urbana-Champaign, USA, 2008: 555–561. doi: 10.1109/ALLERTON.2008.4797607.
    BOROUMAND M and FRIDRICH J. Applications of explicit non-linear feature maps in steganalysis[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(4): 823–833. doi: 10.1109/TIFS.2017.2766580
    HU Zhen, LIN Ming, and ZHANG Changshui. Dependent online kernel learning with constant number of random fourier features[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(10): 2464–2476. doi: 10.1109/TNNLS.2014.2387313
    SHARMA M, JAYADEVA, SOMAN S, et al. Large-scale minimal complexity machines using explicit feature maps[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(10): 2653–2662. doi: 10.1109/TSMC.2017.2694321
    王迎旭. 基于随机特征的多核分布式协同模糊聚类算法研究[D]. [硕士论文], 济南大学, 2019: 21–65.

    WANG Yingxu. Research of random feature based multiple kernel collaborative fuzzy clustering method in P2P distributed network[D]. [Master dissertation], University of Jinan, 2019: 21–65.
    LIU Yuqi, SUN Chao, and JIANG Shouda. A kernel least mean square algorithm based on randomized feature networks[J]. Applied Sciences, 2018, 8(3): 458. doi: 10.3390/app8030458
    王永德, 王军. 随机信号分析基础[M]. 3版. 北京: 电子工业出版社, 2009: 11.

    WANG Yongde and WANG Jun. Fundamentals of Random Signal Analysis[M]. 3rd ed. Beijing: Electronic Industry Press, 2009: 11.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1683
  • HTML全文浏览量:  658
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-08
  • 修回日期:  2020-04-30
  • 网络出版日期:  2020-05-15
  • 刊出日期:  2020-08-18

目录

    /

    返回文章
    返回